Multimodal emotion recognition: A comprehensive review, trends, and challenges

计算机科学 数据科学 情绪识别 认知科学 人工智能 心理学
作者
Manju Priya Arthanarisamy Ramaswamy,Suja Palaniswamy
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:14 (6)
标识
DOI:10.1002/widm.1563
摘要

Abstract Automatic emotion recognition is a burgeoning field of research and has its roots in psychology and cognitive science. This article comprehensively reviews multimodal emotion recognition, covering various aspects such as emotion theories, discrete and dimensional models, emotional response systems, datasets, and current trends. This article reviewed 179 multimodal emotion recognition literature papers from 2017 to 2023 to reflect on the current trends in multimodal affective computing. This article covers various modalities used in emotion recognition based on the emotional response system under four categories: subjective experience comprising text and self‐report; peripheral physiology comprising electrodermal, cardiovascular, facial muscle, and respiration activity; central physiology comprising EEG, neuroimaging, and EOG; behavior comprising facial, vocal, whole‐body behavior, and observer ratings. This review summarizes the measures and behavior of each modality under various emotional states. This article provides an extensive list of multimodal datasets and their unique characteristics. The recent advances in multimodal emotion recognition are grouped based on the research focus areas such as emotion elicitation strategy, data collection and handling, the impact of culture and modality on multimodal emotion recognition systems, feature extraction, feature selection, alignment of signals across the modalities, and fusion strategies. The recent multimodal fusion strategies are detailed in this article, as extracting shared representations of different modalities, removing redundant features from different modalities, and learning critical features from each modality are crucial for multimodal emotion recognition. This article summarizes the strengths and weaknesses of multimodal emotion recognition based on the review outcome, along with challenges and future work in multimodal emotion recognition. This article aims to serve as a lucid introduction, covering all aspects of multimodal emotion recognition for novices. This article is categorized under: Fundamental Concepts of Data and Knowledge > Human Centricity and User Interaction Technologies > Cognitive Computing Technologies > Artificial Intelligence
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mia发布了新的文献求助10
刚刚
刚刚
迟大猫应助宇月幸成采纳,获得10
1秒前
可爱的函函应助才下眉头采纳,获得10
2秒前
3秒前
lyq777发布了新的文献求助10
5秒前
刘荻萩应助yang采纳,获得10
5秒前
6秒前
单于寒云发布了新的文献求助20
6秒前
7秒前
8秒前
10秒前
a_hu完成签到,获得积分10
11秒前
11秒前
11秒前
reflux应助zhang005on采纳,获得10
12秒前
12秒前
LHL关闭了LHL文献求助
12秒前
12秒前
脑洞疼应助玠岚采纳,获得10
12秒前
a_hu发布了新的文献求助50
15秒前
Bonjour发布了新的文献求助10
15秒前
yy发布了新的文献求助10
16秒前
16秒前
化工牛马发布了新的文献求助10
16秒前
刘小天发布了新的文献求助10
17秒前
lyq777完成签到,获得积分10
18秒前
Rita发布了新的文献求助10
18秒前
所所应助妩媚的妙海采纳,获得10
19秒前
19秒前
19秒前
20秒前
随遇而安完成签到 ,获得积分10
20秒前
MoriZhang完成签到,获得积分10
21秒前
vicky发布了新的文献求助10
22秒前
美女完成签到,获得积分10
22秒前
111发布了新的文献求助10
22秒前
24秒前
reflux应助vicky采纳,获得10
27秒前
科研通AI5应助语安采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542648
求助须知:如何正确求助?哪些是违规求助? 3120011
关于积分的说明 9341267
捐赠科研通 2818101
什么是DOI,文献DOI怎么找? 1549346
邀请新用户注册赠送积分活动 722106
科研通“疑难数据库(出版商)”最低求助积分说明 712944