From Static to Dynamic Structures: Improving Binding Affinity Prediction with Graph‐Based Deep Learning

深度学习 计算机科学 人工智能 图形 化学 理论计算机科学
作者
Yaosen Min,Wei Ye,Peizhuo Wang,Li Wang,Han Li,Nian Wu,Sebastian Bauer,Shuxin Zheng,Yu Shi,Li Wang,Ji Wu,Dan Zhao,Jianyang Zeng
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202405404
摘要

Accurate prediction of protein-ligand binding affinities is an essential challenge in structure-based drug design. Despite recent advances in data-driven methods for affinity prediction, their accuracy is still limited, partially because they only take advantage of static crystal structures while the actual binding affinities are generally determined by the thermodynamic ensembles between proteins and ligands. One effective way to approximate such a thermodynamic ensemble is to use molecular dynamics (MD) simulation. Here, an MD dataset containing 3,218 different protein-ligand complexes is curated, and Dynaformer, a graph-based deep learning model is further developed to predict the binding affinities by learning the geometric characteristics of the protein-ligand interactions from the MD trajectories. In silico experiments demonstrated that the model exhibits state-of-the-art scoring and ranking power on the CASF-2016 benchmark dataset, outperforming the methods hitherto reported. Moreover, in a virtual screening on heat shock protein 90 (HSP90) using Dynaformer, 20 candidates are identified and their binding affinities are further experimentally validated. Dynaformer displayed promising results in virtual drug screening, revealing 12 hit compounds (two are in the submicromolar range), including several novel scaffolds. Overall, these results demonstrated that the approach offer a promising avenue for accelerating the early drug discovery process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
沐晴发布了新的文献求助10
2秒前
2秒前
陈秋妮发布了新的文献求助10
3秒前
鱼包包发布了新的文献求助10
3秒前
sunny完成签到,获得积分10
3秒前
华仔应助sy采纳,获得10
4秒前
12发布了新的文献求助10
4秒前
4秒前
YYR发布了新的文献求助10
4秒前
隐形曼青应助milos采纳,获得10
5秒前
5秒前
張肉肉发布了新的文献求助10
6秒前
Yallabo发布了新的文献求助200
7秒前
qwertyu111发布了新的文献求助10
7秒前
ethanxiang发布了新的文献求助20
9秒前
Lurant完成签到,获得积分10
10秒前
复杂的茉莉完成签到,获得积分10
10秒前
10秒前
10秒前
眼睛大的冰蓝完成签到,获得积分10
11秒前
12秒前
沐晴完成签到,获得积分10
14秒前
tsumugi发布了新的文献求助10
14秒前
hk发布了新的文献求助10
15秒前
16秒前
Owen应助冬不拉的红糖纸采纳,获得10
16秒前
ding应助Hoolyshit采纳,获得10
16秒前
16秒前
刘骁萱完成签到 ,获得积分10
17秒前
鲤鱼灵波完成签到,获得积分20
18秒前
19秒前
谢天遇你发布了新的文献求助10
19秒前
19秒前
深情安青应助直率的珍采纳,获得10
20秒前
大意的小小完成签到 ,获得积分10
20秒前
璩qu发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
23秒前
Orange应助吴华余采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469534
求助须知:如何正确求助?哪些是违规求助? 4572619
关于积分的说明 14336346
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465098
邀请新用户注册赠送积分活动 1453599
关于科研通互助平台的介绍 1428091