From Static to Dynamic Structures: Improving Binding Affinity Prediction with Graph‐Based Deep Learning

深度学习 计算机科学 人工智能 图形 化学 理论计算机科学
作者
Yaosen Min,Wei Ye,Peizhuo Wang,Li Wang,Han Li,Nian Wu,Sebastian Bauer,Shuxin Zheng,Yu Shi,Li Wang,Ji Wu,Dan Zhao,Jianyang Zeng
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202405404
摘要

Accurate prediction of protein-ligand binding affinities is an essential challenge in structure-based drug design. Despite recent advances in data-driven methods for affinity prediction, their accuracy is still limited, partially because they only take advantage of static crystal structures while the actual binding affinities are generally determined by the thermodynamic ensembles between proteins and ligands. One effective way to approximate such a thermodynamic ensemble is to use molecular dynamics (MD) simulation. Here, an MD dataset containing 3,218 different protein-ligand complexes is curated, and Dynaformer, a graph-based deep learning model is further developed to predict the binding affinities by learning the geometric characteristics of the protein-ligand interactions from the MD trajectories. In silico experiments demonstrated that the model exhibits state-of-the-art scoring and ranking power on the CASF-2016 benchmark dataset, outperforming the methods hitherto reported. Moreover, in a virtual screening on heat shock protein 90 (HSP90) using Dynaformer, 20 candidates are identified and their binding affinities are further experimentally validated. Dynaformer displayed promising results in virtual drug screening, revealing 12 hit compounds (two are in the submicromolar range), including several novel scaffolds. Overall, these results demonstrated that the approach offer a promising avenue for accelerating the early drug discovery process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
零零完成签到,获得积分10
1秒前
1秒前
科研完成签到,获得积分10
1秒前
年糕完成签到 ,获得积分10
2秒前
2秒前
知许发布了新的文献求助10
2秒前
2秒前
禾苗完成签到 ,获得积分10
3秒前
霍则风发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
6秒前
pengyuLiu发布了新的文献求助40
6秒前
lonely发布了新的文献求助10
7秒前
李卓霖发布了新的文献求助10
7秒前
有趣的桃应助忧郁的灵枫采纳,获得10
8秒前
搜集达人应助忧郁的灵枫采纳,获得30
8秒前
李健应助忧郁的灵枫采纳,获得10
8秒前
英俊的铭应助忧郁的灵枫采纳,获得10
8秒前
大个应助忧郁的灵枫采纳,获得10
8秒前
科研通AI6应助忧郁的灵枫采纳,获得100
8秒前
科研通AI6应助忧郁的灵枫采纳,获得100
8秒前
科研通AI6应助忧郁的灵枫采纳,获得10
8秒前
科研通AI6应助忧郁的灵枫采纳,获得100
8秒前
orixero应助勤劳的圆采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
汉堡包应助咻咻采纳,获得10
10秒前
10秒前
11秒前
达乐发布了新的文献求助10
11秒前
文艺的匪发布了新的文献求助10
11秒前
FANFAN发布了新的文献求助10
11秒前
12秒前
12秒前
Gloriauuu完成签到,获得积分20
12秒前
crobro应助张利双采纳,获得30
12秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442780
求助须知:如何正确求助?哪些是违规求助? 4552892
关于积分的说明 14239536
捐赠科研通 4474264
什么是DOI,文献DOI怎么找? 2451974
邀请新用户注册赠送积分活动 1442887
关于科研通互助平台的介绍 1418632