From Static to Dynamic Structures: Improving Binding Affinity Prediction with Graph‐Based Deep Learning

深度学习 计算机科学 人工智能 图形 化学 理论计算机科学
作者
Yaosen Min,Wei Ye,Peizhuo Wang,Li Wang,Han Li,Nian Wu,Sebastian Bauer,Shuxin Zheng,Yu Shi,Li Wang,Ji Wu,Dan Zhao,Jianyang Zeng
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202405404
摘要

Accurate prediction of protein-ligand binding affinities is an essential challenge in structure-based drug design. Despite recent advances in data-driven methods for affinity prediction, their accuracy is still limited, partially because they only take advantage of static crystal structures while the actual binding affinities are generally determined by the thermodynamic ensembles between proteins and ligands. One effective way to approximate such a thermodynamic ensemble is to use molecular dynamics (MD) simulation. Here, an MD dataset containing 3,218 different protein-ligand complexes is curated, and Dynaformer, a graph-based deep learning model is further developed to predict the binding affinities by learning the geometric characteristics of the protein-ligand interactions from the MD trajectories. In silico experiments demonstrated that the model exhibits state-of-the-art scoring and ranking power on the CASF-2016 benchmark dataset, outperforming the methods hitherto reported. Moreover, in a virtual screening on heat shock protein 90 (HSP90) using Dynaformer, 20 candidates are identified and their binding affinities are further experimentally validated. Dynaformer displayed promising results in virtual drug screening, revealing 12 hit compounds (two are in the submicromolar range), including several novel scaffolds. Overall, these results demonstrated that the approach offer a promising avenue for accelerating the early drug discovery process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
超级丝发布了新的文献求助10
4秒前
4秒前
5秒前
Komorebi完成签到,获得积分10
6秒前
江三村完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
一个火蓉果啊完成签到,获得积分10
8秒前
WSGQT发布了新的文献求助10
8秒前
刘若鑫完成签到,获得积分10
8秒前
8秒前
YMUSTC完成签到,获得积分10
11秒前
巴黎的防发布了新的文献求助10
12秒前
乐乐应助刻苦沛芹采纳,获得10
12秒前
JamesPei应助风中的静珊采纳,获得10
13秒前
回答完成签到,获得积分10
13秒前
13秒前
凭亿近人发布了新的文献求助10
13秒前
司徒文青应助孙波采纳,获得30
16秒前
16秒前
独特乘云发布了新的文献求助10
18秒前
18秒前
llls完成签到 ,获得积分10
19秒前
不加糖的草莓酱给不加糖的草莓酱的求助进行了留言
20秒前
21秒前
Chaoe发布了新的文献求助10
21秒前
23秒前
24秒前
小事完成签到 ,获得积分10
24秒前
华仔应助FIGGIEKIO采纳,获得10
25秒前
zhao发布了新的文献求助10
25秒前
25秒前
是瓜瓜不完成签到,获得积分10
27秒前
青山完成签到,获得积分10
27秒前
万能图书馆应助Yolo采纳,获得10
28秒前
28秒前
meinvaikeyan发布了新的文献求助30
28秒前
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991393
求助须知:如何正确求助?哪些是违规求助? 3532689
关于积分的说明 11258442
捐赠科研通 3271694
什么是DOI,文献DOI怎么找? 1805512
邀请新用户注册赠送积分活动 882515
科研通“疑难数据库(出版商)”最低求助积分说明 809325