From Static to Dynamic Structures: Improving Binding Affinity Prediction with Graph‐Based Deep Learning

深度学习 计算机科学 人工智能 图形 化学 理论计算机科学
作者
Yaosen Min,Wei Ye,Peizhuo Wang,Li Wang,Han Li,Nian Wu,Sebastian Bauer,Shuxin Zheng,Yu Shi,Li Wang,Ji Wu,Dan Zhao,Jianyang Zeng
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202405404
摘要

Accurate prediction of protein-ligand binding affinities is an essential challenge in structure-based drug design. Despite recent advances in data-driven methods for affinity prediction, their accuracy is still limited, partially because they only take advantage of static crystal structures while the actual binding affinities are generally determined by the thermodynamic ensembles between proteins and ligands. One effective way to approximate such a thermodynamic ensemble is to use molecular dynamics (MD) simulation. Here, an MD dataset containing 3,218 different protein-ligand complexes is curated, and Dynaformer, a graph-based deep learning model is further developed to predict the binding affinities by learning the geometric characteristics of the protein-ligand interactions from the MD trajectories. In silico experiments demonstrated that the model exhibits state-of-the-art scoring and ranking power on the CASF-2016 benchmark dataset, outperforming the methods hitherto reported. Moreover, in a virtual screening on heat shock protein 90 (HSP90) using Dynaformer, 20 candidates are identified and their binding affinities are further experimentally validated. Dynaformer displayed promising results in virtual drug screening, revealing 12 hit compounds (two are in the submicromolar range), including several novel scaffolds. Overall, these results demonstrated that the approach offer a promising avenue for accelerating the early drug discovery process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赛特新思发布了新的文献求助50
刚刚
蛙蛙完成签到 ,获得积分10
刚刚
1秒前
无私的梦凡完成签到,获得积分10
2秒前
2秒前
当当发布了新的文献求助10
2秒前
学问完成签到,获得积分10
2秒前
浮游应助zhx采纳,获得10
3秒前
3秒前
3秒前
3秒前
wr0112完成签到,获得积分10
4秒前
Esten完成签到,获得积分10
4秒前
铲子完成签到,获得积分10
5秒前
四十四次日落完成签到,获得积分10
5秒前
5秒前
mauve完成签到 ,获得积分10
5秒前
大神完成签到,获得积分0
5秒前
lxu110完成签到,获得积分20
6秒前
6秒前
zsgved完成签到,获得积分10
6秒前
7秒前
王东完成签到,获得积分10
7秒前
bkagyin应助sunshitao采纳,获得10
8秒前
东风徐来发布了新的文献求助10
8秒前
我是老大应助野性的沉鱼采纳,获得10
8秒前
Joey发布了新的文献求助10
8秒前
8秒前
9秒前
samantha完成签到,获得积分10
9秒前
越红完成签到,获得积分10
9秒前
潇洒的不可完成签到,获得积分10
9秒前
香蕉觅云应助雨霧雲采纳,获得10
9秒前
10秒前
wxt发布了新的文献求助10
10秒前
10秒前
fanfan发布了新的文献求助10
10秒前
阳光冰颜完成签到,获得积分10
11秒前
13秒前
qc发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069021
求助须知:如何正确求助?哪些是违规求助? 4290502
关于积分的说明 13367811
捐赠科研通 4110451
什么是DOI,文献DOI怎么找? 2250993
邀请新用户注册赠送积分活动 1256182
关于科研通互助平台的介绍 1188650