From Static to Dynamic Structures: Improving Binding Affinity Prediction with Graph‐Based Deep Learning

深度学习 计算机科学 人工智能 图形 化学 理论计算机科学
作者
Yaosen Min,Wei Ye,Peizhuo Wang,Li Wang,Han Li,Nian Wu,Sebastian Bauer,Shuxin Zheng,Yu Shi,Li Wang,Ji Wu,Dan Zhao,Jianyang Zeng
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202405404
摘要

Accurate prediction of protein-ligand binding affinities is an essential challenge in structure-based drug design. Despite recent advances in data-driven methods for affinity prediction, their accuracy is still limited, partially because they only take advantage of static crystal structures while the actual binding affinities are generally determined by the thermodynamic ensembles between proteins and ligands. One effective way to approximate such a thermodynamic ensemble is to use molecular dynamics (MD) simulation. Here, an MD dataset containing 3,218 different protein-ligand complexes is curated, and Dynaformer, a graph-based deep learning model is further developed to predict the binding affinities by learning the geometric characteristics of the protein-ligand interactions from the MD trajectories. In silico experiments demonstrated that the model exhibits state-of-the-art scoring and ranking power on the CASF-2016 benchmark dataset, outperforming the methods hitherto reported. Moreover, in a virtual screening on heat shock protein 90 (HSP90) using Dynaformer, 20 candidates are identified and their binding affinities are further experimentally validated. Dynaformer displayed promising results in virtual drug screening, revealing 12 hit compounds (two are in the submicromolar range), including several novel scaffolds. Overall, these results demonstrated that the approach offer a promising avenue for accelerating the early drug discovery process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
syzh完成签到,获得积分10
4秒前
4秒前
万能图书馆应助XL神放采纳,获得10
4秒前
6秒前
上官若男应助数学情缘采纳,获得50
7秒前
研友_8Qxp7Z完成签到,获得积分10
7秒前
8秒前
莎莎发布了新的文献求助10
9秒前
科研通AI6应助yr采纳,获得10
10秒前
syzh发布了新的文献求助10
11秒前
12秒前
科研通AI6应助zheweiwang采纳,获得10
14秒前
坦率紫菜完成签到,获得积分10
14秒前
doctorduanmu发布了新的文献求助10
15秒前
16秒前
123完成签到,获得积分10
17秒前
洒脱发布了新的文献求助10
21秒前
Damtree发布了新的文献求助10
21秒前
动人的代芹完成签到,获得积分10
22秒前
科研通AI6应助博珺辰采纳,获得10
22秒前
SciGPT应助零距离采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
科研通AI6应助yr采纳,获得30
24秒前
柔弱的芷珍完成签到,获得积分10
25秒前
赘婿应助catear采纳,获得10
25秒前
hbhsjk完成签到,获得积分10
31秒前
32秒前
武雨寒发布了新的文献求助10
32秒前
数学情缘完成签到,获得积分10
32秒前
Emi完成签到 ,获得积分10
32秒前
SciGPT应助山水之乐采纳,获得10
33秒前
在水一方应助mont采纳,获得10
33秒前
33秒前
Criminology34应助左西采纳,获得10
34秒前
34秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439