From Static to Dynamic Structures: Improving Binding Affinity Prediction with Graph‐Based Deep Learning

深度学习 计算机科学 人工智能 图形 化学 理论计算机科学
作者
Yaosen Min,Wei Ye,Peizhuo Wang,Li Wang,Han Li,Nian Wu,Sebastian Bauer,Shuxin Zheng,Yu Shi,Li Wang,Ji Wu,Dan Zhao,Jianyang Zeng
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202405404
摘要

Accurate prediction of protein-ligand binding affinities is an essential challenge in structure-based drug design. Despite recent advances in data-driven methods for affinity prediction, their accuracy is still limited, partially because they only take advantage of static crystal structures while the actual binding affinities are generally determined by the thermodynamic ensembles between proteins and ligands. One effective way to approximate such a thermodynamic ensemble is to use molecular dynamics (MD) simulation. Here, an MD dataset containing 3,218 different protein-ligand complexes is curated, and Dynaformer, a graph-based deep learning model is further developed to predict the binding affinities by learning the geometric characteristics of the protein-ligand interactions from the MD trajectories. In silico experiments demonstrated that the model exhibits state-of-the-art scoring and ranking power on the CASF-2016 benchmark dataset, outperforming the methods hitherto reported. Moreover, in a virtual screening on heat shock protein 90 (HSP90) using Dynaformer, 20 candidates are identified and their binding affinities are further experimentally validated. Dynaformer displayed promising results in virtual drug screening, revealing 12 hit compounds (two are in the submicromolar range), including several novel scaffolds. Overall, these results demonstrated that the approach offer a promising avenue for accelerating the early drug discovery process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助乐茵采纳,获得10
1秒前
义气秀发完成签到 ,获得积分10
1秒前
周周发布了新的文献求助10
1秒前
酷波er应助微笑的筮采纳,获得10
2秒前
2秒前
栗悟饭与龟波功完成签到,获得积分10
2秒前
SciGPT应助蔬菜狗狗采纳,获得10
3秒前
研友_ZrBNxZ完成签到,获得积分10
3秒前
gwgplmz发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
CipherSage应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
candy完成签到,获得积分10
5秒前
小蘑菇应助科研通管家采纳,获得30
5秒前
5秒前
大个应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
7秒前
研友_nEWly8发布了新的文献求助10
7秒前
8秒前
老迟到的醉卉完成签到,获得积分10
8秒前
小二郎应助Sxq采纳,获得10
9秒前
cyndi发布了新的文献求助10
9秒前
一刀发布了新的文献求助10
9秒前
10秒前
尤小玉完成签到,获得积分10
10秒前
11秒前
浮游应助火山世界树采纳,获得10
12秒前
12秒前
科研通AI6应助皮卡丘比特采纳,获得10
13秒前
13秒前
Joanne发布了新的文献求助10
13秒前
candy发布了新的文献求助50
13秒前
14秒前
农艳宁发布了新的文献求助10
15秒前
15秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5237739
求助须知:如何正确求助?哪些是违规求助? 4405468
关于积分的说明 13710602
捐赠科研通 4273720
什么是DOI,文献DOI怎么找? 2345109
邀请新用户注册赠送积分活动 1342257
关于科研通互助平台的介绍 1300114