Interpretable Machine Learning for Investigating the Molecular Mechanisms Governing the Transparency of Colorless Transparent Polyimide for OLED Cover Windows

有机发光二极管 透明度(行为) 材料科学 聚酰亚胺 封面(代数) 光电子学 光学透明度 纳米技术 图层(电子) 机械工程 计算机科学 工程类 计算机安全
作者
Songyang Zhang,Xiaojie He,Peng Xiao,Xuejian Xia,Feng Zheng,Shuangfei Xiang,Qinghua Lu
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202409143
摘要

Abstract With the rapid development of flexible displays and wearable electronics, there are a substantial demand for colorless transparent polyimide (CPI) films with different properties. Traditional trial‐and‐error experimental methods are time‐consuming and costly, and density functional theory based prediction of HOMO‐LUMO gap energy also takes time and is prone to varying degrees of error. Inspired by machine learning (ML) applications in molecular and materials science, this paper proposed a data‐driven ML strategy to study the correlation between microscopic molecular mechanisms and macroscopic optical properties. Based on varying degrees of impact of various molecular features on the cutoff wavelength ( λ cutoff ), the ML algorithm is first used to quickly and accurately predict the λ cutoff of CPI. Several new CPI films are then designed and prepared based on the key molecular features, and the predicted values of their λ cutoff are effectively verified within the experimental error range. The interpretability provided by the model allows to establish correlations between the nine key descriptors identified and their physicochemical meanings. The contributions are also analyzed to the transparency of polyimide films, thereby giving insight into the molecular mechanisms underlying transparency modulation for CPIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
wangayting发布了新的文献求助30
1秒前
2秒前
3秒前
内向宛凝完成签到,获得积分20
3秒前
4秒前
善学以致用应助瓜瓜采纳,获得10
4秒前
4秒前
BAEKHYUNLUCKY完成签到,获得积分10
5秒前
6秒前
会游泳的猪完成签到,获得积分10
7秒前
ZhuYJ完成签到,获得积分10
7秒前
汎影发布了新的文献求助10
8秒前
8秒前
赫如冰发布了新的文献求助10
9秒前
bulangni完成签到,获得积分10
10秒前
内向宛凝发布了新的文献求助10
10秒前
ZHOUJING发布了新的文献求助30
11秒前
11秒前
fbbggb发布了新的文献求助10
12秒前
koh完成签到,获得积分10
12秒前
由怜雪完成签到,获得积分10
12秒前
沉静的依风完成签到,获得积分10
13秒前
FashionBoy应助wangayting采纳,获得30
13秒前
英俊的铭应助Longbin李采纳,获得10
13秒前
13发布了新的文献求助10
14秒前
14秒前
16秒前
研友_VZG7GZ应助赫如冰采纳,获得10
18秒前
20秒前
清脆松发布了新的文献求助10
22秒前
22秒前
活泼千雁发布了新的文献求助20
22秒前
22秒前
成田大進完成签到,获得积分10
23秒前
23秒前
23秒前
26秒前
吕布骑狗完成签到,获得积分10
27秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788907
关于积分的说明 7789001
捐赠科研通 2445272
什么是DOI,文献DOI怎么找? 1300255
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046