Interpretable Machine Learning for Investigating the Molecular Mechanisms Governing the Transparency of Colorless Transparent Polyimide for OLED Cover Windows

有机发光二极管 透明度(行为) 材料科学 聚酰亚胺 封面(代数) 光电子学 光学透明度 纳米技术 图层(电子) 机械工程 计算机科学 工程类 计算机安全
作者
Songyang Zhang,Xiaojie He,Peng Xiao,Xuejian Xia,Feng Zheng,Shuangfei Xiang,Qinghua Lu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (49) 被引量:19
标识
DOI:10.1002/adfm.202409143
摘要

Abstract With the rapid development of flexible displays and wearable electronics, there are a substantial demand for colorless transparent polyimide (CPI) films with different properties. Traditional trial‐and‐error experimental methods are time‐consuming and costly, and density functional theory based prediction of HOMO‐LUMO gap energy also takes time and is prone to varying degrees of error. Inspired by machine learning (ML) applications in molecular and materials science, this paper proposed a data‐driven ML strategy to study the correlation between microscopic molecular mechanisms and macroscopic optical properties. Based on varying degrees of impact of various molecular features on the cutoff wavelength ( λ cutoff ), the ML algorithm is first used to quickly and accurately predict the λ cutoff of CPI. Several new CPI films are then designed and prepared based on the key molecular features, and the predicted values of their λ cutoff are effectively verified within the experimental error range. The interpretability provided by the model allows to establish correlations between the nine key descriptors identified and their physicochemical meanings. The contributions are also analyzed to the transparency of polyimide films, thereby giving insight into the molecular mechanisms underlying transparency modulation for CPIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敬之发布了新的文献求助10
1秒前
研友_VZG7GZ应助清欢采纳,获得10
1秒前
1秒前
1秒前
可爱的函函应助谦让靖儿采纳,获得10
2秒前
wei998发布了新的文献求助10
2秒前
隐形曼青应助liu采纳,获得10
3秒前
3秒前
3秒前
6秒前
6秒前
戴明杰发布了新的文献求助30
6秒前
CodeCraft应助琢钰采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
wxx771510625发布了新的文献求助10
9秒前
浅风发布了新的文献求助10
9秒前
明亮的小蘑菇完成签到 ,获得积分10
9秒前
慧子完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
脂肪小米粥完成签到,获得积分20
12秒前
yznfly应助仙影沫采纳,获得20
13秒前
畅快的小懒虫完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
KIKI发布了新的文献求助10
14秒前
爆米花应助爱意采纳,获得10
15秒前
15秒前
星辰大海应助敬之采纳,获得10
15秒前
幽默阑悦完成签到,获得积分10
15秒前
偶棉套完成签到,获得积分10
16秒前
16秒前
16秒前
小墨在学习完成签到,获得积分10
16秒前
17秒前
hyde发布了新的文献求助10
17秒前
英吉利25发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901