β-内酰胺酶
BETA(编程语言)
多重耐药
微生物学
细菌
光谱(功能分析)
抗生素耐药性
人工智能
生物
计算生物学
数学
计算机科学
抗药性
抗生素
物理
遗传学
大肠杆菌
基因
程序设计语言
量子力学
作者
Enas Al-khlifeh,Ibrahim S. Alkhazi,Majed Abdullah Alrowaily,Mansoor Alghamdi,Malek Alrashidi,Ahmad S. Tarawneh,Ibraheem M. Alkhawaldeh,Ahmad B. Hassanat
摘要
The incidence of microorganisms with extended-spectrum beta-lactamase (ESBL) is on the rise, posing a significant public health concern. The current application of machine learning (ML) focuses on predicting bacterial resistance to optimize antibiotic therapy. This study employs ML to forecast the occurrence of bacteria that generate ESBL and demonstrate resistance to multiple antibiotics (MDR).
科研通智能强力驱动
Strongly Powered by AbleSci AI