重症监护医学
药物输送
抗菌剂
医学
抗生素耐药性
抗生素
临床试验
抗药性
纳米技术
生物
微生物学
病理
材料科学
作者
Yanling Hu,Meng Ding,Xinyi Lv,Jingai Jiang,Jun‐Jie Zhang,Dongliang Yang
标识
DOI:10.1002/adhm.202402240
摘要
Abstract The prevalence of drug‐resistant bacterial infections has emerged as a grave threat to clinical treatment and global human health, presenting one of the foremost challenges in medical care. Thus, there is an urgent imperative to develop safe and efficacious novel antimicrobial strategies. Nitric oxide (NO) is a recognized endogenous signaling molecule, which plays a pivotal role in numerous pathological processes. Currently, NO has garnered significant interest as an antibacterial agent due to its capability to eradicate bacteria, disrupt biofilms, and facilitate wound healing, all while circumventing the emergence of drug resistance. However, the inherently unstable characteristic of NO therapeutic gas renders the controlled administration of NO gases exceedingly challenging. Hence, in this review, the current challenge of bacterial infection is discussed; then it is briefly elucidated the antibacterial mechanism of NO and comprehensively delineate the recent advancements in stimulus‐responsive NO delivery platforms, along with their merits, obstacles, and prospective avenues for clinical application. This review offers guidance for future advancements in NO‐medicated anti‐infection therapy is hoped.
科研通智能强力驱动
Strongly Powered by AbleSci AI