GR-pKa: a message-passing neural network with retention mechanism for pKa prediction.

计算机科学 人工神经网络 机制(生物学) 化学 人工智能 认识论 哲学
作者
Runyu Miao,Dantong Liu,Li Mao,Xingyu Chen,Leihao Zhang,Zhen Yuan,Shanshan Shi,Honglin Li,Shiliang Li
出处
期刊:PubMed 卷期号:25 (5)
标识
DOI:10.1093/bib/bbae408
摘要

During the drug discovery and design process, the acid-base dissociation constant (pKa) of a molecule is critically emphasized due to its crucial role in influencing the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties and biological activity. However, the experimental determination of pKa values is often laborious and complex. Moreover, existing prediction methods exhibit limitations in both the quantity and quality of the training data, as well as in their capacity to handle the complex structural and physicochemical properties of compounds, consequently impeding accuracy and generalization. Therefore, developing a method that can quickly and accurately predict molecular pKa values will to some extent help the structural modification of molecules, and thus assist the development process of new drugs. In this study, we developed a cutting-edge pKa prediction model named GR-pKa (Graph Retention pKa), leveraging a message-passing neural network and employing a multi-fidelity learning strategy to accurately predict molecular pKa values. The GR-pKa model incorporates five quantum mechanical properties related to molecular thermodynamics and dynamics as key features to characterize molecules. Notably, we originally introduced the novel retention mechanism into the message-passing phase, which significantly improves the model's ability to capture and update molecular information. Our GR-pKa model outperforms several state-of-the-art models in predicting macro-pKa values, achieving impressive results with a low mean absolute error of 0.490 and root mean square error of 0.588, and a high R2 of 0.937 on the SAMPL7 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理开山完成签到,获得积分10
1秒前
2秒前
2秒前
妖孽的二狗完成签到 ,获得积分10
4秒前
wjm发布了新的文献求助10
4秒前
核桃应助ronnie采纳,获得10
7秒前
虚幻的夜天完成签到 ,获得积分10
10秒前
彩色夜阑发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
无花果应助温暖琦采纳,获得10
13秒前
13秒前
还单身的香菇完成签到,获得积分10
14秒前
15秒前
于芋菊完成签到,获得积分0
19秒前
汉堡包应助真实的薯片采纳,获得10
19秒前
文静千凡发布了新的文献求助10
19秒前
wjm完成签到,获得积分10
20秒前
CNS发布了新的文献求助10
20秒前
科研王完成签到 ,获得积分10
22秒前
tiger完成签到,获得积分10
23秒前
Hello应助LWJJNU采纳,获得10
24秒前
25秒前
淡淡文轩完成签到,获得积分10
25秒前
27秒前
zjh发布了新的文献求助10
28秒前
阿白发布了新的文献求助10
28秒前
Dan完成签到,获得积分10
29秒前
夏爽2023完成签到,获得积分10
29秒前
CNS完成签到,获得积分10
32秒前
32秒前
Dan发布了新的文献求助10
33秒前
小冰棍完成签到,获得积分10
34秒前
小蘑菇应助白白采纳,获得10
34秒前
年轻的若颜完成签到,获得积分10
37秒前
38秒前
zjh完成签到,获得积分10
38秒前
Moshiqi发布了新的文献求助10
41秒前
今天放假了吗完成签到,获得积分10
42秒前
42秒前
CodeCraft应助渣渣XM采纳,获得10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309