GR-pKa: a message-passing neural network with retention mechanism for pKa prediction.

计算机科学 人工神经网络 机制(生物学) 化学 人工智能 哲学 认识论
作者
Runyu Miao,Dantong Liu,Li Mao,Xingyu Chen,Leihao Zhang,Zhen Yuan,Shanshan Shi,Honglin Li,Shiliang Li
出处
期刊:PubMed 卷期号:25 (5)
标识
DOI:10.1093/bib/bbae408
摘要

During the drug discovery and design process, the acid-base dissociation constant (pKa) of a molecule is critically emphasized due to its crucial role in influencing the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties and biological activity. However, the experimental determination of pKa values is often laborious and complex. Moreover, existing prediction methods exhibit limitations in both the quantity and quality of the training data, as well as in their capacity to handle the complex structural and physicochemical properties of compounds, consequently impeding accuracy and generalization. Therefore, developing a method that can quickly and accurately predict molecular pKa values will to some extent help the structural modification of molecules, and thus assist the development process of new drugs. In this study, we developed a cutting-edge pKa prediction model named GR-pKa (Graph Retention pKa), leveraging a message-passing neural network and employing a multi-fidelity learning strategy to accurately predict molecular pKa values. The GR-pKa model incorporates five quantum mechanical properties related to molecular thermodynamics and dynamics as key features to characterize molecules. Notably, we originally introduced the novel retention mechanism into the message-passing phase, which significantly improves the model's ability to capture and update molecular information. Our GR-pKa model outperforms several state-of-the-art models in predicting macro-pKa values, achieving impressive results with a low mean absolute error of 0.490 and root mean square error of 0.588, and a high R2 of 0.937 on the SAMPL7 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助日月山河永在采纳,获得10
1秒前
1秒前
2秒前
2秒前
慕青应助没有名称采纳,获得10
2秒前
HEIKU应助聪慧的机器猫采纳,获得10
2秒前
拼搏翠桃发布了新的文献求助10
3秒前
8个老登发布了新的文献求助10
4秒前
4秒前
hhy完成签到,获得积分10
4秒前
孙一雯发布了新的文献求助30
5秒前
5秒前
Xxxnnian完成签到,获得积分20
6秒前
fancy发布了新的文献求助10
6秒前
apple完成签到,获得积分10
6秒前
6秒前
oldlee发布了新的文献求助10
7秒前
斜杠武发布了新的文献求助10
7秒前
毕业就好发布了新的文献求助10
7秒前
wusanlinshi完成签到,获得积分20
8秒前
娜行发布了新的文献求助10
8秒前
大雄完成签到,获得积分10
8秒前
kai发布了新的文献求助10
9秒前
科研通AI5应助老西瓜采纳,获得10
9秒前
核弹完成签到 ,获得积分10
9秒前
kevin完成签到,获得积分10
10秒前
Chem is try发布了新的文献求助10
10秒前
皖医梁朝伟完成签到 ,获得积分10
10秒前
汉堡包应助野性的南蕾采纳,获得10
10秒前
10秒前
便宜小师傅完成签到 ,获得积分10
11秒前
霏冉完成签到,获得积分10
11秒前
12秒前
Grayball应助包容的剑采纳,获得10
12秒前
董小天天完成签到,获得积分10
12秒前
12秒前
华仔应助qym采纳,获得10
12秒前
琅琊为刃完成签到,获得积分10
13秒前
酷波er应助hhh采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672