已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A prediction model based on deep learning and radiomics features of DWI for the assessment of microsatellite instability in endometrial cancer

接收机工作特性 有效扩散系数 医学 逻辑回归 微卫星不稳定性 无线电技术 随机森林 人工智能 曲线下面积 子宫内膜癌 磁共振成像 肿瘤科 机器学习 内科学 计算机科学 放射科 癌症 微卫星 生物 药代动力学 等位基因 基因 生物化学
作者
Jing Wang,Pujiao Song,Meng Zhang,Wei Liu,Xi Zeng,Nanshan Chen,Yuxia Li,Minghua Wang
出处
期刊:Cancer Medicine [Wiley]
卷期号:13 (16) 被引量:2
标识
DOI:10.1002/cam4.70046
摘要

Abstract Background To explore the efficacy of a prediction model based on diffusion‐weighted imaging (DWI) features extracted from deep learning (DL) and radiomics combined with clinical parameters and apparent diffusion coefficient (ADC) values to identify microsatellite instability (MSI) in endometrial cancer (EC). Methods This study included a cohort of 116 patients with EC, who were subsequently divided into training ( n = 81) and test ( n = 35) sets. From DWI, conventional radiomics features and convolutional neural network‐based DL features were extracted. Random forest (RF) and logistic regression were adopted as classifiers. DL features, radiomics features, clinical variables, ADC values, and their combinations were applied to establish DL, radiomics, clinical, ADC, and combined models, respectively. The predictive performance was evaluated through the area under the receiver operating characteristic curve (AUC), total integrated discrimination index (IDI), net reclassification index (NRI), calibration curves, and decision curve analysis (DCA). Results The optimal predictive model, based on an RF classifier, comprised four DL features, three radiomics features, two clinical variables, and an ADC value. In the training and test sets, this model exhibited AUC values of 0.989 (95% CI: 0.935–1.000) and 0.885 (95% CI: 0.731–0.967), respectively, demonstrating different degrees of improvement compared with the clinical, DL, radiomics, and ADC models (AUC‐training = 0.671, 0.873, 0.833, and 0.814, AUC‐test = 0.685, 0.783, 0.708, and 0.713, respectively). The NRI and IDI analyses revealed that the combined model resulted in improved risk reclassification of the MSI status compared to the clinical, radiomics, DL, and ADC models. The calibration curves and DCA indicated good consistency and clinical utility of this model, respectively. Conclusions The predictive model based on DWI features extracted from DL and radiomics combined with clinical parameters and ADC values could effectively assess the MSI status in EC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木有完成签到 ,获得积分10
刚刚
JYH12138发布了新的文献求助10
刚刚
ZSQ完成签到 ,获得积分10
1秒前
costahe发布了新的文献求助30
1秒前
Owen应助三度和弦采纳,获得10
2秒前
cheyy发布了新的文献求助10
4秒前
5秒前
JYH12138完成签到,获得积分10
5秒前
拥有八根情丝完成签到 ,获得积分10
6秒前
研友_VZG7GZ应助JYH12138采纳,获得10
8秒前
科研通AI2S应助ReX547413采纳,获得10
9秒前
caitlin完成签到 ,获得积分10
9秒前
陈伟杰发布了新的文献求助10
11秒前
菲1208完成签到,获得积分10
12秒前
13秒前
costahe完成签到,获得积分10
13秒前
gc完成签到 ,获得积分10
13秒前
激动的晓筠完成签到 ,获得积分10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
脑洞疼应助喂喂采纳,获得10
14秒前
14秒前
三度和弦发布了新的文献求助10
18秒前
阿菜完成签到,获得积分10
18秒前
田様应助陈伟杰采纳,获得10
19秒前
orixero应助三度和弦采纳,获得10
22秒前
文艺的枫叶完成签到 ,获得积分10
22秒前
托丽莲睡拿完成签到,获得积分10
24秒前
leileilei完成签到,获得积分10
25秒前
紫菜汤完成签到 ,获得积分10
25秒前
李健应助萤火虫采纳,获得10
27秒前
希望天下0贩的0应助灵鹿采纳,获得10
28秒前
310769994完成签到,获得积分10
29秒前
30秒前
35秒前
Perry完成签到,获得积分10
35秒前
小马甲应助szy采纳,获得10
36秒前
酷波er应助蔡俊辉采纳,获得10
36秒前
小滨完成签到 ,获得积分10
37秒前
起个名不麻烦完成签到 ,获得积分10
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544330
求助须知:如何正确求助?哪些是违规求助? 3121530
关于积分的说明 9347654
捐赠科研通 2819788
什么是DOI,文献DOI怎么找? 1550415
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713265