Enhanced Performance and Stability of PEDOT:PSS Thin-Film Thermoelectrics by De-doping with Nitrogen-Doped Graphene Quantum Dots

佩多:嘘 材料科学 兴奋剂 石墨烯 热电效应 量子点 纳米技术 塞贝克系数 导电聚合物 光电子学 聚合物 热导率 复合材料 物理 图层(电子) 热力学
作者
Jeong Han Song,Jeehyun Jeong,Ju-Hyung Park,Ganghyun Park,Ichiro Imae,Jeonghun Kwak
出处
期刊:ACS applied electronic materials [American Chemical Society]
被引量:1
标识
DOI:10.1021/acsaelm.4c01357
摘要

Conducting polymers have recently garnered attention owing to their high flexibility, low-cost fabrication, and environmental friendliness, along with a tunable doping level suitable for various prospective electronic devices. When it comes to thermoelectric (TE) devices that can convert low-grade heat to electricity, achieving optimal carrier concentration (n) through post-treatment is significant because electrical conductivity (σ) and the Seebeck coefficient (S) have an interdependent relationship in terms of n. It is thus crucial to continuously explore doping strategies that can boost the TE properties while maintaining polymer morphology to minimize the sacrifice of σ upon de-doping. In this work, we propose a de-doping method for poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) by incorporating nitrogen-doped graphene quantum dots (GQDs) in a post-treatment process. We discovered that GQDs can modulate the doping level of PEDOT:PSS while preserving the linear quinoid structure of the PEDOT chains. Based on various analyses, we found that the minimally deteriorated microstructure primarily originated from the intrinsically hydrophilic nature of GQDs, allowing strong π–π interactions with PEDOT chains, and electron-donation-based de-doping by GQDs. Consequently, S could be enhanced from 18.0 μV K–1 to 33.4 μV K–1 with less than a 30% decrease in σ to achieve a high thermoelectric power factor of 84.3 μW m–1 K–2. Furthermore, the TE properties were well-maintained under ambient and humid conditions, owing to the robust PEDOT network by GQDs. We believe that our de-doping technique using nitrogen-doped GQDs can lead to a direction for stable and high-performance TE devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助xihuanni采纳,获得10
刚刚
刚刚
刚刚
刚刚
王豪哲发布了新的文献求助10
1秒前
1秒前
隐形蜡烛发布了新的文献求助10
1秒前
晚心发布了新的文献求助10
1秒前
lyj_eye完成签到,获得积分20
1秒前
椰丝yes发布了新的文献求助10
2秒前
2秒前
852应助SDS采纳,获得10
2秒前
复杂的箴发布了新的文献求助10
3秒前
wxh发布了新的文献求助10
3秒前
bkagyin应助高天雨采纳,获得10
3秒前
Ahan发布了新的文献求助10
3秒前
4秒前
kelsey完成签到 ,获得积分10
4秒前
lyj_eye发布了新的文献求助10
4秒前
大模型应助AstroWander采纳,获得10
4秒前
Leo发布了新的文献求助10
4秒前
4秒前
开心的幻柏完成签到 ,获得积分10
4秒前
蝰蛇发布了新的文献求助10
5秒前
酷波er应助XPR采纳,获得10
6秒前
科研通AI5应助袁佳琪采纳,获得10
6秒前
6秒前
zc完成签到,获得积分10
6秒前
shanshan发布了新的文献求助10
7秒前
7秒前
8秒前
xiaoqi发布了新的文献求助10
8秒前
10秒前
万能图书馆应助bluelu采纳,获得30
10秒前
糊涂的剑完成签到,获得积分10
11秒前
11秒前
12秒前
完美世界应助谷粱紫槐采纳,获得10
12秒前
chi发布了新的文献求助10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542666
求助须知:如何正确求助?哪些是违规求助? 3120072
关于积分的说明 9341436
捐赠科研通 2818131
什么是DOI,文献DOI怎么找? 1549355
邀请新用户注册赠送积分活动 722120
科研通“疑难数据库(出版商)”最低求助积分说明 712944