Integrating molecular and cellular components of endothelial shear stress mechanotransduction

机械转化 机械敏感通道 糖萼 细胞生物学 内皮 剪应力 生物 细胞骨架 机械生物学 化学 离子通道 细胞 生物化学 遗传学 材料科学 受体 复合材料
作者
Gavin Power,Larissa Ferreira‐Santos,Luis A. Martinez‐Lemus,Jaume Padilla
出处
期刊:American Journal of Physiology-heart and Circulatory Physiology [American Physiological Society]
标识
DOI:10.1152/ajpheart.00431.2024
摘要

The lining of blood vessels is constantly exposed to mechanical forces exerted by blood flow against the endothelium. Endothelial cells detect these tangential forces ( i.e., shear stress), initiating a host of intracellular signaling cascades that regulate vascular physiology. Thus, vascular health is tethered to the endothelial cells' capacity to transduce shear stress. Indeed, the mechanotransduction of shear stress underlies a variety of cardiovascular benefits, including some of those associated with increased physical activity. However, endothelial mechanotransduction is impaired in aging and disease states such as obesity and type 2 diabetes, precipitating the development of vascular disease. Understanding endothelial mechanotransduction of shear stress, as well as the molecular and cellular mechanisms by which this process becomes defective, is critical for the identification and development of novel therapeutic targets against cardiovascular disease. In this review, we detail the primary mechanosensitive structures that have been implicated in detecting shear stress, including junctional proteins such as PECAM-1, the extracellular glycocalyx and its components, and ion channels such as Piezo1. We delineate which molecules are truly mechanosenstive and which may simply be indispensable for the downstream transmission of force. Furthermore, we discuss how these mechanosensors interact with other cellular structures, such as the cytoskeleton and membrane lipid rafts, which are implicated in translating shear forces to biochemical signals. Based on findings to date, we also seek to integrate these cellular and molecular mechanisms with a view of deciphering endothelial mechanotransduction of shear stress, a tenet of vascular physiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘蓓蓓完成签到,获得积分20
刚刚
刚刚
香蕉觅云应助Sheart采纳,获得10
刚刚
秭归发布了新的文献求助10
刚刚
可爱玫瑰完成签到,获得积分10
1秒前
XUU发布了新的文献求助30
2秒前
清澄发布了新的文献求助10
3秒前
文献哈巴狗完成签到,获得积分10
4秒前
CC发布了新的文献求助10
4秒前
科研通AI2S应助Sunye采纳,获得30
4秒前
5秒前
小二郎应助qio一眼采纳,获得30
6秒前
秭归完成签到,获得积分10
7秒前
8秒前
Yi发布了新的文献求助10
9秒前
9秒前
Bethune完成签到 ,获得积分10
9秒前
10秒前
婷婷完成签到,获得积分10
10秒前
能干的邹完成签到 ,获得积分10
10秒前
快乐的晟睿完成签到,获得积分10
11秒前
pomfret完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
蔓子哥发布了新的文献求助10
13秒前
特昂唐完成签到,获得积分10
13秒前
科目三应助XUU采纳,获得10
13秒前
怅神霄而避光完成签到,获得积分10
14秒前
隐形曼青应助wu采纳,获得10
14秒前
15秒前
复杂白凡发布了新的文献求助10
15秒前
15秒前
17秒前
anna1992发布了新的文献求助10
18秒前
MM发布了新的文献求助10
19秒前
zjiang发布了新的文献求助30
19秒前
Anoxia完成签到,获得积分20
20秒前
乐乐应助Impurity采纳,获得10
20秒前
ppppp完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159473
求助须知:如何正确求助?哪些是违规求助? 2810505
关于积分的说明 7888418
捐赠科研通 2469473
什么是DOI,文献DOI怎么找? 1314873
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012