Leaf rolling detection in maize under complex environments using an improved deep learning method

生物 人工智能 农学 计算机科学
作者
Yuanhao Wang,Xiao‐Yuan Jing,Yonggang Gao,Xiaohong Han,Zhao Cheng,Weihua Pan
出处
期刊:Plant Molecular Biology [Springer Science+Business Media]
卷期号:114 (5)
标识
DOI:10.1007/s11103-024-01491-4
摘要

Leaf rolling is a common adaptive response that plants have evolved to counteract the detrimental effects of various environmental stresses. Gaining insight into the mechanisms underlying leaf rolling alterations presents researchers with a unique opportunity to enhance stress tolerance in crops exhibiting leaf rolling, such as maize. In order to achieve a more profound understanding of leaf rolling, it is imperative to ascertain the occurrence and extent of this phenotype. While traditional manual leaf rolling detection is slow and laborious, research into high-throughput methods for detecting leaf rolling within our investigation scope remains limited. In this study, we present an approach for detecting leaf rolling in maize using the YOLOv8 model. Our method, LRD-YOLO, integrates two significant improvements: a Convolutional Block Attention Module to augment feature extraction capabilities, and a Deformable ConvNets v2 to enhance adaptability to changes in target shape and scale. Through experiments on a dataset encompassing severe occlusion, variations in leaf scale and shape, and complex background scenarios, our approach achieves an impressive mean average precision of 81.6%, surpassing current state-of-the-art methods. Furthermore, the LRD-YOLO model demands only 8.0 G floating point operations and the parameters of 3.48 M. We have proposed an innovative method for leaf rolling detection in maize, and experimental outcomes showcase the efficacy of LRD-YOLO in precisely detecting leaf rolling in complex scenarios while maintaining real-time inference speed. In this study, we propose an improved object detection algorithm for detecting leaf rolling, a common adaptive response to environmental stresses. It achieves 81.6% mean average precision, surpassing existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QX发布了新的文献求助10
刚刚
从容乌完成签到 ,获得积分10
刚刚
zhenxing发布了新的文献求助10
1秒前
JamesPei应助Love采纳,获得10
1秒前
2秒前
2秒前
zbw完成签到,获得积分10
3秒前
紫陌完成签到,获得积分10
3秒前
科研通AI6应助萧一采纳,获得10
3秒前
3秒前
酷波er应助黎昕采纳,获得10
4秒前
秋秋发布了新的文献求助50
5秒前
✨✨✨发布了新的文献求助10
6秒前
6秒前
7秒前
研友_59AB85完成签到,获得积分10
7秒前
8秒前
慧慧完成签到,获得积分10
8秒前
lt2发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
conghuiqu完成签到,获得积分10
9秒前
Hwchaodoctor完成签到,获得积分10
9秒前
袁玥发布了新的文献求助10
9秒前
Hello应助科研小白采纳,获得10
9秒前
万能图书馆应助爱听歌老1采纳,获得10
10秒前
一筐猪完成签到,获得积分10
10秒前
11秒前
妞妞叫小南完成签到,获得积分10
11秒前
想飞的猪完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
thuuu完成签到,获得积分10
11秒前
11秒前
11秒前
Tristan发布了新的文献求助10
12秒前
12秒前
12秒前
草莓奶冻完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960499
求助须知:如何正确求助?哪些是违规求助? 4221027
关于积分的说明 13145442
捐赠科研通 4004770
什么是DOI,文献DOI怎么找? 2191671
邀请新用户注册赠送积分活动 1205803
关于科研通互助平台的介绍 1116923