Leaf rolling detection in maize under complex environments using an improved deep learning method

生物 人工智能 农学 计算机科学
作者
Yuanhao Wang,Xiao‐Yuan Jing,Yonggang Gao,Xiaohong Han,Zhao Cheng,Weihua Pan
出处
期刊:Plant Molecular Biology [Springer Science+Business Media]
卷期号:114 (5)
标识
DOI:10.1007/s11103-024-01491-4
摘要

Leaf rolling is a common adaptive response that plants have evolved to counteract the detrimental effects of various environmental stresses. Gaining insight into the mechanisms underlying leaf rolling alterations presents researchers with a unique opportunity to enhance stress tolerance in crops exhibiting leaf rolling, such as maize. In order to achieve a more profound understanding of leaf rolling, it is imperative to ascertain the occurrence and extent of this phenotype. While traditional manual leaf rolling detection is slow and laborious, research into high-throughput methods for detecting leaf rolling within our investigation scope remains limited. In this study, we present an approach for detecting leaf rolling in maize using the YOLOv8 model. Our method, LRD-YOLO, integrates two significant improvements: a Convolutional Block Attention Module to augment feature extraction capabilities, and a Deformable ConvNets v2 to enhance adaptability to changes in target shape and scale. Through experiments on a dataset encompassing severe occlusion, variations in leaf scale and shape, and complex background scenarios, our approach achieves an impressive mean average precision of 81.6%, surpassing current state-of-the-art methods. Furthermore, the LRD-YOLO model demands only 8.0 G floating point operations and the parameters of 3.48 M. We have proposed an innovative method for leaf rolling detection in maize, and experimental outcomes showcase the efficacy of LRD-YOLO in precisely detecting leaf rolling in complex scenarios while maintaining real-time inference speed. In this study, we propose an improved object detection algorithm for detecting leaf rolling, a common adaptive response to environmental stresses. It achieves 81.6% mean average precision, surpassing existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莎拉波贰完成签到,获得积分10
1秒前
1秒前
小饭团子完成签到 ,获得积分10
2秒前
Puffkten完成签到 ,获得积分10
2秒前
liu完成签到,获得积分10
2秒前
3秒前
小大夫完成签到 ,获得积分10
3秒前
科研通AI6应助火星上立果采纳,获得10
3秒前
浮游应助鹏笑采纳,获得10
4秒前
zcl应助科研通管家采纳,获得150
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
zhihui发布了新的文献求助10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
SSNN完成签到,获得积分10
7秒前
独特秋灵应助科研通管家采纳,获得50
7秒前
量子星尘发布了新的文献求助150
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
zcl应助科研通管家采纳,获得150
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
幕帆应助科研通管家采纳,获得20
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
zcl应助科研通管家采纳,获得60
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
zcl应助科研通管家采纳,获得150
8秒前
馆长应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
馆长应助科研通管家采纳,获得10
8秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
Deng完成签到,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
独特秋灵应助科研通管家采纳,获得50
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142300
求助须知:如何正确求助?哪些是违规求助? 4340566
关于积分的说明 13517807
捐赠科研通 4180482
什么是DOI,文献DOI怎么找? 2292477
邀请新用户注册赠送积分活动 1293105
关于科研通互助平台的介绍 1235621