Leaf rolling detection in maize under complex environments using an improved deep learning method

生物 人工智能 农学 计算机科学
作者
Yuanhao Wang,Xiao‐Yuan Jing,Yonggang Gao,Xiaohong Han,Zhao Cheng,Weihua Pan
出处
期刊:Plant Molecular Biology [Springer Science+Business Media]
卷期号:114 (5)
标识
DOI:10.1007/s11103-024-01491-4
摘要

Leaf rolling is a common adaptive response that plants have evolved to counteract the detrimental effects of various environmental stresses. Gaining insight into the mechanisms underlying leaf rolling alterations presents researchers with a unique opportunity to enhance stress tolerance in crops exhibiting leaf rolling, such as maize. In order to achieve a more profound understanding of leaf rolling, it is imperative to ascertain the occurrence and extent of this phenotype. While traditional manual leaf rolling detection is slow and laborious, research into high-throughput methods for detecting leaf rolling within our investigation scope remains limited. In this study, we present an approach for detecting leaf rolling in maize using the YOLOv8 model. Our method, LRD-YOLO, integrates two significant improvements: a Convolutional Block Attention Module to augment feature extraction capabilities, and a Deformable ConvNets v2 to enhance adaptability to changes in target shape and scale. Through experiments on a dataset encompassing severe occlusion, variations in leaf scale and shape, and complex background scenarios, our approach achieves an impressive mean average precision of 81.6%, surpassing current state-of-the-art methods. Furthermore, the LRD-YOLO model demands only 8.0 G floating point operations and the parameters of 3.48 M. We have proposed an innovative method for leaf rolling detection in maize, and experimental outcomes showcase the efficacy of LRD-YOLO in precisely detecting leaf rolling in complex scenarios while maintaining real-time inference speed. In this study, we propose an improved object detection algorithm for detecting leaf rolling, a common adaptive response to environmental stresses. It achieves 81.6% mean average precision, surpassing existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OaaO发布了新的文献求助10
刚刚
马上毕业完成签到 ,获得积分10
刚刚
zzzzz完成签到,获得积分10
1秒前
星辰大海应助Skuld采纳,获得10
2秒前
汉堡包应助健脊护柱采纳,获得10
8秒前
9秒前
9秒前
nenoaowu发布了新的文献求助10
11秒前
七里香发布了新的文献求助10
13秒前
李伟完成签到,获得积分10
14秒前
14秒前
Skuld发布了新的文献求助10
14秒前
阿秋完成签到,获得积分10
15秒前
zho发布了新的文献求助10
19秒前
22秒前
23秒前
cl发布了新的文献求助10
24秒前
25秒前
huanir99发布了新的文献求助30
26秒前
26秒前
fengjoy发布了新的文献求助10
28秒前
阿拉发布了新的文献求助10
28秒前
Terahertz完成签到 ,获得积分10
29秒前
小皮猪完成签到,获得积分10
30秒前
好运小陈发布了新的文献求助10
32秒前
34秒前
34秒前
35秒前
37秒前
开朗的傲丝完成签到 ,获得积分10
38秒前
鹿茸与共发布了新的文献求助10
38秒前
Kejie发布了新的文献求助10
39秒前
40秒前
李爱国应助十万个吃什么采纳,获得10
41秒前
Oh发布了新的文献求助10
41秒前
Rondab应助许安采纳,获得10
41秒前
laber应助珂珂采纳,获得50
42秒前
linkman发布了新的文献求助30
43秒前
奋斗小公主完成签到,获得积分10
43秒前
所所应助超人采纳,获得10
44秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999331
求助须知:如何正确求助?哪些是违规求助? 3538658
关于积分的说明 11274856
捐赠科研通 3277581
什么是DOI,文献DOI怎么找? 1807615
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810101