Leaf rolling detection in maize under complex environments using an improved deep learning method

生物 人工智能 农学 计算机科学
作者
Yuanhao Wang,Xiao‐Yuan Jing,Yonggang Gao,Xiaohong Han,Zhao Cheng,Weihua Pan
出处
期刊:Plant Molecular Biology [Springer Science+Business Media]
卷期号:114 (5)
标识
DOI:10.1007/s11103-024-01491-4
摘要

Leaf rolling is a common adaptive response that plants have evolved to counteract the detrimental effects of various environmental stresses. Gaining insight into the mechanisms underlying leaf rolling alterations presents researchers with a unique opportunity to enhance stress tolerance in crops exhibiting leaf rolling, such as maize. In order to achieve a more profound understanding of leaf rolling, it is imperative to ascertain the occurrence and extent of this phenotype. While traditional manual leaf rolling detection is slow and laborious, research into high-throughput methods for detecting leaf rolling within our investigation scope remains limited. In this study, we present an approach for detecting leaf rolling in maize using the YOLOv8 model. Our method, LRD-YOLO, integrates two significant improvements: a Convolutional Block Attention Module to augment feature extraction capabilities, and a Deformable ConvNets v2 to enhance adaptability to changes in target shape and scale. Through experiments on a dataset encompassing severe occlusion, variations in leaf scale and shape, and complex background scenarios, our approach achieves an impressive mean average precision of 81.6%, surpassing current state-of-the-art methods. Furthermore, the LRD-YOLO model demands only 8.0 G floating point operations and the parameters of 3.48 M. We have proposed an innovative method for leaf rolling detection in maize, and experimental outcomes showcase the efficacy of LRD-YOLO in precisely detecting leaf rolling in complex scenarios while maintaining real-time inference speed. In this study, we propose an improved object detection algorithm for detecting leaf rolling, a common adaptive response to environmental stresses. It achieves 81.6% mean average precision, surpassing existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助合适可乐采纳,获得10
1秒前
CSII完成签到,获得积分20
2秒前
one关注了科研通微信公众号
3秒前
zho关闭了zho文献求助
4秒前
啊啊啊啊发布了新的文献求助10
5秒前
5秒前
SYLH应助青蛙的第二滴口水采纳,获得10
7秒前
LYZ完成签到,获得积分10
7秒前
香蕉觅云应助不敢装睡采纳,获得10
9秒前
10秒前
luffy完成签到 ,获得积分10
11秒前
feixue完成签到,获得积分10
11秒前
徐家欢完成签到 ,获得积分10
12秒前
一朵云发布了新的文献求助20
13秒前
Wendy完成签到,获得积分10
13秒前
神不楞登完成签到 ,获得积分10
13秒前
14秒前
养猪的大哥完成签到,获得积分10
15秒前
16秒前
16秒前
zho发布了新的文献求助10
17秒前
zyq发布了新的文献求助10
17秒前
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
小白应助科研通管家采纳,获得10
17秒前
wuxunxun2015发布了新的文献求助10
18秒前
小白应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
cdh1994应助科研通管家采纳,获得20
18秒前
ding应助科研通管家采纳,获得10
18秒前
思源应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
顾矜应助ww采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
中国化工新材料产业发展报告(2024年) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761965
求助须知:如何正确求助?哪些是违规求助? 3305655
关于积分的说明 10135129
捐赠科研通 3019805
什么是DOI,文献DOI怎么找? 1658407
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783