Leaf rolling detection in maize under complex environments using an improved deep learning method

生物 人工智能 农学 计算机科学
作者
Yuanhao Wang,Xiao‐Yuan Jing,Yonggang Gao,Xiaohong Han,Zhao Cheng,Weihua Pan
出处
期刊:Plant Molecular Biology [Springer Nature]
卷期号:114 (5)
标识
DOI:10.1007/s11103-024-01491-4
摘要

Leaf rolling is a common adaptive response that plants have evolved to counteract the detrimental effects of various environmental stresses. Gaining insight into the mechanisms underlying leaf rolling alterations presents researchers with a unique opportunity to enhance stress tolerance in crops exhibiting leaf rolling, such as maize. In order to achieve a more profound understanding of leaf rolling, it is imperative to ascertain the occurrence and extent of this phenotype. While traditional manual leaf rolling detection is slow and laborious, research into high-throughput methods for detecting leaf rolling within our investigation scope remains limited. In this study, we present an approach for detecting leaf rolling in maize using the YOLOv8 model. Our method, LRD-YOLO, integrates two significant improvements: a Convolutional Block Attention Module to augment feature extraction capabilities, and a Deformable ConvNets v2 to enhance adaptability to changes in target shape and scale. Through experiments on a dataset encompassing severe occlusion, variations in leaf scale and shape, and complex background scenarios, our approach achieves an impressive mean average precision of 81.6%, surpassing current state-of-the-art methods. Furthermore, the LRD-YOLO model demands only 8.0 G floating point operations and the parameters of 3.48 M. We have proposed an innovative method for leaf rolling detection in maize, and experimental outcomes showcase the efficacy of LRD-YOLO in precisely detecting leaf rolling in complex scenarios while maintaining real-time inference speed. In this study, we propose an improved object detection algorithm for detecting leaf rolling, a common adaptive response to environmental stresses. It achieves 81.6% mean average precision, surpassing existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莓莓发布了新的文献求助30
2秒前
2秒前
4秒前
4秒前
5秒前
大道希言发布了新的文献求助10
5秒前
6秒前
一点点脸红完成签到,获得积分10
7秒前
ttjj应助亦玉采纳,获得10
7秒前
yuyan发布了新的文献求助10
7秒前
8秒前
君无戏言发布了新的文献求助10
8秒前
汤鑫发布了新的文献求助10
9秒前
9秒前
土块发布了新的文献求助10
10秒前
10秒前
赘婿应助hudiefeifei306采纳,获得10
10秒前
wanci应助siri1313采纳,获得10
10秒前
感动的薄荷完成签到,获得积分10
11秒前
FashionBoy应助柔弱诗筠采纳,获得10
11秒前
12秒前
科目三应助惠惠采纳,获得30
12秒前
图图发布了新的文献求助10
13秒前
隐形曼青应助zxm采纳,获得10
15秒前
15秒前
奶油苏苏糖完成签到,获得积分20
15秒前
18秒前
思源应助Qiu采纳,获得10
19秒前
19秒前
20秒前
完美世界应助qq78910采纳,获得10
20秒前
英姑应助123采纳,获得10
20秒前
朴实的傲之完成签到,获得积分10
20秒前
dawnstar完成签到 ,获得积分10
20秒前
烟花应助欠虐宝宝采纳,获得10
20秒前
21秒前
21秒前
21秒前
花酒发布了新的文献求助10
21秒前
NexusExplorer应助cyj采纳,获得30
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344456
求助须知:如何正确求助?哪些是违规求助? 4479697
关于积分的说明 13944205
捐赠科研通 4376849
什么是DOI,文献DOI怎么找? 2404949
邀请新用户注册赠送积分活动 1397495
关于科研通互助平台的介绍 1369791