Leaf rolling detection in maize under complex environments using an improved deep learning method

生物 人工智能 农学 计算机科学
作者
Yuanhao Wang,Xiao‐Yuan Jing,Yonggang Gao,Xiaohong Han,Zhao Cheng,Weihua Pan
出处
期刊:Plant Molecular Biology [Springer Nature]
卷期号:114 (5)
标识
DOI:10.1007/s11103-024-01491-4
摘要

Leaf rolling is a common adaptive response that plants have evolved to counteract the detrimental effects of various environmental stresses. Gaining insight into the mechanisms underlying leaf rolling alterations presents researchers with a unique opportunity to enhance stress tolerance in crops exhibiting leaf rolling, such as maize. In order to achieve a more profound understanding of leaf rolling, it is imperative to ascertain the occurrence and extent of this phenotype. While traditional manual leaf rolling detection is slow and laborious, research into high-throughput methods for detecting leaf rolling within our investigation scope remains limited. In this study, we present an approach for detecting leaf rolling in maize using the YOLOv8 model. Our method, LRD-YOLO, integrates two significant improvements: a Convolutional Block Attention Module to augment feature extraction capabilities, and a Deformable ConvNets v2 to enhance adaptability to changes in target shape and scale. Through experiments on a dataset encompassing severe occlusion, variations in leaf scale and shape, and complex background scenarios, our approach achieves an impressive mean average precision of 81.6%, surpassing current state-of-the-art methods. Furthermore, the LRD-YOLO model demands only 8.0 G floating point operations and the parameters of 3.48 M. We have proposed an innovative method for leaf rolling detection in maize, and experimental outcomes showcase the efficacy of LRD-YOLO in precisely detecting leaf rolling in complex scenarios while maintaining real-time inference speed. In this study, we propose an improved object detection algorithm for detecting leaf rolling, a common adaptive response to environmental stresses. It achieves 81.6% mean average precision, surpassing existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力超大力完成签到 ,获得积分10
刚刚
yu发布了新的文献求助10
刚刚
虚幻念寒完成签到 ,获得积分10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
元谷雪完成签到,获得积分10
1秒前
Mic应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
酷波er应助轧路机啊采纳,获得10
1秒前
LYHZAU完成签到,获得积分10
1秒前
1秒前
ls发布了新的文献求助10
2秒前
3秒前
亘古匆匆发布了新的文献求助30
3秒前
4秒前
CodeCraft应助Genius采纳,获得10
4秒前
4秒前
5秒前
5秒前
ding应助光亮的立果采纳,获得10
5秒前
七月发布了新的文献求助10
6秒前
隐形曼青应助小邸采纳,获得30
6秒前
7秒前
Lemenchichi完成签到,获得积分10
7秒前
香蕉觅云应助香蕉如音采纳,获得10
8秒前
8秒前
8秒前
活泼的寄风完成签到,获得积分10
8秒前
打打应助Clover采纳,获得10
8秒前
10秒前
bcy发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5319859
求助须知:如何正确求助?哪些是违规求助? 4461827
关于积分的说明 13884803
捐赠科研通 4352481
什么是DOI,文献DOI怎么找? 2390628
邀请新用户注册赠送积分活动 1384354
关于科研通互助平台的介绍 1354131