Leaf rolling detection in maize under complex environments using an improved deep learning method

生物 人工智能 农学 计算机科学
作者
Yuanhao Wang,Xiao‐Yuan Jing,Yonggang Gao,Xiaohong Han,Zhao Cheng,Weihua Pan
出处
期刊:Plant Molecular Biology [Springer Science+Business Media]
卷期号:114 (5)
标识
DOI:10.1007/s11103-024-01491-4
摘要

Leaf rolling is a common adaptive response that plants have evolved to counteract the detrimental effects of various environmental stresses. Gaining insight into the mechanisms underlying leaf rolling alterations presents researchers with a unique opportunity to enhance stress tolerance in crops exhibiting leaf rolling, such as maize. In order to achieve a more profound understanding of leaf rolling, it is imperative to ascertain the occurrence and extent of this phenotype. While traditional manual leaf rolling detection is slow and laborious, research into high-throughput methods for detecting leaf rolling within our investigation scope remains limited. In this study, we present an approach for detecting leaf rolling in maize using the YOLOv8 model. Our method, LRD-YOLO, integrates two significant improvements: a Convolutional Block Attention Module to augment feature extraction capabilities, and a Deformable ConvNets v2 to enhance adaptability to changes in target shape and scale. Through experiments on a dataset encompassing severe occlusion, variations in leaf scale and shape, and complex background scenarios, our approach achieves an impressive mean average precision of 81.6%, surpassing current state-of-the-art methods. Furthermore, the LRD-YOLO model demands only 8.0 G floating point operations and the parameters of 3.48 M. We have proposed an innovative method for leaf rolling detection in maize, and experimental outcomes showcase the efficacy of LRD-YOLO in precisely detecting leaf rolling in complex scenarios while maintaining real-time inference speed. In this study, we propose an improved object detection algorithm for detecting leaf rolling, a common adaptive response to environmental stresses. It achieves 81.6% mean average precision, surpassing existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
伽古拉40k完成签到,获得积分10
1秒前
1秒前
IU秋阳发布了新的文献求助30
1秒前
夏夏完成签到,获得积分10
2秒前
2秒前
3秒前
安静严青完成签到 ,获得积分10
5秒前
爆米花应助舒适的素采纳,获得10
5秒前
natianhao发布了新的文献求助10
5秒前
6秒前
南有乔木LSS完成签到,获得积分20
6秒前
笨笨的太清完成签到,获得积分10
6秒前
小鱼儿发布了新的文献求助10
6秒前
小小怪大士完成签到,获得积分10
6秒前
尚帝完成签到,获得积分10
7秒前
0806发布了新的文献求助20
8秒前
大胆的岂愈完成签到,获得积分20
8秒前
8秒前
acs发布了新的文献求助10
9秒前
IU秋阳完成签到,获得积分10
10秒前
lin完成签到,获得积分10
11秒前
11秒前
耶稣与梦完成签到,获得积分10
12秒前
年轻的冥王星完成签到,获得积分10
12秒前
成就觅翠完成签到,获得积分10
14秒前
xgx984发布了新的文献求助10
14秒前
15秒前
张智信发布了新的文献求助10
15秒前
hehsk完成签到,获得积分10
18秒前
18秒前
li发布了新的文献求助10
18秒前
19秒前
19秒前
舒适的素发布了新的文献求助10
22秒前
23秒前
八月发布了新的文献求助10
24秒前
姜惠完成签到,获得积分10
25秒前
宋佳珍发布了新的文献求助10
25秒前
tzy完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306813
求助须知:如何正确求助?哪些是违规求助? 4452593
关于积分的说明 13854857
捐赠科研通 4340137
什么是DOI,文献DOI怎么找? 2382958
邀请新用户注册赠送积分活动 1377840
关于科研通互助平台的介绍 1345621