Cardiovascular risk prediction using metabolomic biomarkers and polygenic risk scores: a cohort study and modelling analyses

医学 多基因风险评分 代谢组学 队列 风险评估 内科学 生物信息学 基因型 遗传学 单核苷酸多态性 计算机安全 生物 基因 计算机科学
作者
Stephen Ritchie,Xia Jiang,Lisa Pennells,Yaling Xu,Christopher S. Coffey,Yang Liu,Praveen Surendran,S Karthikeyan,Sally R. Lambert,John Danesh,Adam S. Butterworth,Angela Wood,Stephen Kaptoge,Emanuele Di Angelantonio,Michael Inouye
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1) 被引量:1
标识
DOI:10.1093/eurheartj/ehae666.2674
摘要

Abstract Background/Introduction Metabolomic biomarker scores and polygenic risk scores (PRS) have shown promise for improving cardiovascular disease (CVD) prediction, but have not yet been evaluated in the context of current prediction models (SCORE2) and ESC recommendations for 10-year prediction of fatal and non-fatal CVD. Purpose To assess whether metabolomics biomarkers and PRSs can improve 10-year CVD risk prediction when added to SCORE2, and whether improvements are meaningful at ESC 2021 recommended risk thresholds for treatment consideration. Methods Metabolomics biomarker scores were constructed and compared to PRS and SCORE2 in 170,000 UK Biobank participants (5,096 incident CVD cases) aged 40–69 without previous CVD, diabetes, or lipid-lowering treatment. Improvement in risk discrimination when added to SCORE2 was assessed using Harrel’s C-index. Improvement in risk stratification following ESC guideline risk thresholds was assessed using categorical net reclassification. Population modelling was subsequently applied to estimate the impact on CVD prevention if applied at scale. Results Risk discrimination provided by SCORE2 (C-index: 0.718) was similarly improved by addition of metabolomic biomarker scores (ΔC-index: 0.011 [0.009–0.014]) and PRSs (ΔC-index 0.009; [0.007–0.012]). Addition of both metabolomic biomarker scores and PRSs to SCORE2 yielded the largest improvement risk discrimination, with ΔC-index 0.019 (0.016–0.022). Concomitant improvements in risk stratification were observed in categorical net reclassification index, with net case reclassification of 13.04% (11.67–14.41%). Modelling metabolic biomarker scores and PRSs for targeted risk-reclassification increased the number of CVD events prevented per 100,000 screened from 201 to 370 (ΔCVDprevented: 170 [158–182]) while essentially maintaining the number of statins prescribed per CVD event prevented. Conclusions Combining metabolomic biomarker scores and PRSs with SCORE2 moderately enhances prediction of first-onset CVD, and could have substantial population health benefit if applied at scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
吴祥坤完成签到,获得积分10
1秒前
1秒前
小汪汪发布了新的文献求助10
3秒前
曾梦发布了新的文献求助10
3秒前
5秒前
123完成签到,获得积分20
5秒前
浮华完成签到,获得积分10
6秒前
6秒前
6秒前
飞飞发布了新的文献求助10
8秒前
SciGPT应助清脆的婷冉采纳,获得10
8秒前
过时的哑铃完成签到,获得积分10
8秒前
幸福慕蕊发布了新的文献求助10
10秒前
正正完成签到,获得积分10
10秒前
深情安青应助壮观以松采纳,获得10
11秒前
徐扬发布了新的文献求助10
11秒前
今后应助jiejie采纳,获得200
12秒前
852应助lei采纳,获得10
12秒前
周周发布了新的文献求助10
12秒前
12秒前
12秒前
ghy完成签到 ,获得积分10
13秒前
曾梦完成签到,获得积分10
14秒前
linxiang发布了新的文献求助10
15秒前
正正发布了新的文献求助10
16秒前
酷波er应助小小采纳,获得10
16秒前
桐桐应助啦啦康采纳,获得10
16秒前
脑洞疼应助小南采纳,获得10
17秒前
17秒前
鹿友绿完成签到,获得积分10
17秒前
牛牛牛应助飞飞采纳,获得10
21秒前
周周完成签到,获得积分10
22秒前
23秒前
ding应助向北游采纳,获得10
23秒前
24秒前
26秒前
名丿完成签到,获得积分10
27秒前
zwhy发布了新的文献求助10
28秒前
桐桐应助发文章12138采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959309
求助须知:如何正确求助?哪些是违规求助? 3505589
关于积分的说明 11124738
捐赠科研通 3237345
什么是DOI,文献DOI怎么找? 1789116
邀请新用户注册赠送积分活动 871544
科研通“疑难数据库(出版商)”最低求助积分说明 802844