Higher Precision Is Not Always Better: Search Algorithm and Consumer Engagement

计算机科学 算法
作者
Wei Zhou,Mingfeng Lin,Mo Xiao,Lu Fang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2023.00478
摘要

On decentralized e-commerce platforms, search algorithms play a critical role in matching buyers and sellers. A typical search algorithm routinely refines and improves its catalog of data to increase search precision, but the effects of a more precise search are little known. We evaluate such effects via a 2019 quasiexperiment on a world-leading e-commerce platform in which the search algorithm refined some product categories into finer subgroups to allocate consumer queries to more relevant product listings. Our data cover millions of consumers’ search and purchase behaviors over six months across multiple search sessions and product categories, enabling us to investigate trade-offs over time and across categories. We find that a more precise search algorithm improves consumers’ click-through and purchase rates drastically and instantaneously, but it comes at the cost of a significant decrease in consumer engagement and unplanned purchases over a longer time horizon. On average, consumers who used to spend more time searching now conduct 5.5% fewer searches, spend 4.1% less time on the platform, and decrease their spending on related categories by 2.2% in the week after the search precision increases. Our examination of the mechanisms behind these consequences calls for more careful search algorithm designs that account for not only instant conversion based on search precision but also consumer engagement and sellers’ strategic responses in the longer horizon. This paper was accepted by Anindya Ghose, information systems. Funding: This work was supported by the Key Program of the National Natural Science Foundation of China [Grants 72141305 and 72192803] and the Ministry of Education, People’s Republic of China (Fundamental Research Funds for the Central Universities), both to L. Fang. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.00478 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默的溪灵给DrZ的求助进行了留言
1秒前
思源应助呆呆的猕猴桃采纳,获得10
1秒前
敖哥完成签到,获得积分10
1秒前
无花果应助呦呦采纳,获得10
3秒前
852应助珍惜采纳,获得10
4秒前
4秒前
Tadalafil发布了新的文献求助10
4秒前
m赤子心发布了新的文献求助10
4秒前
4秒前
6秒前
stuffmatter应助JV采纳,获得10
7秒前
科研通AI2S应助JV采纳,获得10
7秒前
小熊星星完成签到,获得积分10
7秒前
盒子应助00采纳,获得10
7秒前
泡面小猪发布了新的文献求助30
9秒前
9秒前
Siney发布了新的文献求助10
10秒前
10秒前
Andrew完成签到,获得积分10
10秒前
啊啊啊lei发布了新的文献求助10
11秒前
12秒前
万能图书馆应助小mol仙采纳,获得10
12秒前
长乐发布了新的文献求助20
12秒前
13秒前
wenbin发布了新的文献求助10
13秒前
14秒前
15秒前
SciGPT应助zhudaxia采纳,获得10
15秒前
小熊星星发布了新的文献求助30
15秒前
17秒前
李健应助马绍清采纳,获得10
17秒前
缥缈逍遥完成签到 ,获得积分10
18秒前
自由莺发布了新的文献求助10
18秒前
冬瓜熊发布了新的文献求助10
18秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
豆子应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得20
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076162
求助须知:如何正确求助?哪些是违规求助? 2729044
关于积分的说明 7507177
捐赠科研通 2377267
什么是DOI,文献DOI怎么找? 1260526
科研通“疑难数据库(出版商)”最低求助积分说明 611000
版权声明 597164