General negative pressure annealing approach for creating ultra-high-loading single atom catalyst libraries

催化作用 金属 材料科学 退火(玻璃) X射线吸收精细结构 丙烷 甲醇 化学工程 化学 有机化学 冶金 光谱学 量子力学 工程类 物理
作者
Yi Wang,Chongao Li,Xiao Han,Jintao Bai,Xuejing Wang,Lirong Zheng,Chunxia Hong,Zhijun Li,Jinbo Bai,Kunyue Leng,Yue Lin,Yunteng Qu
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:10
标识
DOI:10.1038/s41467-024-50061-1
摘要

Abstract Catalyst systems populated by high-density single atoms are crucial for improving catalytic activity and selectivity, which can potentially maximize the industrial prospects of heterogeneous single-atom catalysts (SACs). However, achieving high-loading SACs with metal contents above 10 wt% remains challenging. Here we describe a general negative pressure annealing strategy to fabricate ultrahigh-loading SACs with metal contents up to 27.3–44.8 wt% for 13 different metals on a typical carbon nitride matrix. Furthermore, our approach enables the synthesis of high-entropy single-atom catalysts (HESACs) that exhibit the coexistence of multiple metal single atoms with high metal contents. In-situ aberration-corrected HAADF-STEM (AC-STEM) combined with ex-situ X-ray absorption fine structure (XAFS) demonstrate that the negative pressure annealing treatment accelerates the removal of anionic ligand in metal precursors and boosts the bonding of metal species with N defective sites, enabling the formation of dense N-coordinated metal sites. Increasing metal loading on a platinum (Pt) SAC to 41.8 wt% significantly enhances the activity of propane oxidation towards liquid products, including acetone, methanol, and acetic acid et al. This work presents a straightforward and universal approach for achieving many low-cost and high-density SACs for efficient catalytic transformations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
美丽的芷烟给美丽的芷烟的求助进行了留言
1秒前
科研通AI5应助经年采纳,获得10
1秒前
1秒前
勤劳晓亦应助木头人采纳,获得10
2秒前
科研通AI5应助想瘦的海豹采纳,获得10
2秒前
3秒前
科研通AI5应助adazbd采纳,获得10
3秒前
bkagyin应助皮皮桂采纳,获得10
3秒前
4秒前
重要的哈密瓜完成签到 ,获得积分10
4秒前
会飞的云完成签到 ,获得积分10
5秒前
5秒前
毕不了业的凡阿哥完成签到,获得积分10
5秒前
野子发布了新的文献求助10
5秒前
berry完成签到,获得积分10
6秒前
7秒前
LUNWENREQUEST发布了新的文献求助10
7秒前
大模型应助匹诺曹采纳,获得10
8秒前
ding应助过时的又槐采纳,获得10
9秒前
12秒前
鄙视注册完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
落寞溪灵完成签到 ,获得积分10
16秒前
玖玖柒idol完成签到,获得积分10
16秒前
曌虞完成签到,获得积分10
16秒前
17秒前
啥,这都是啥完成签到,获得积分10
17秒前
皮皮桂发布了新的文献求助10
18秒前
19秒前
大大发布了新的文献求助10
19秒前
20秒前
orixero应助wang1090采纳,获得30
22秒前
22秒前
l11x29发布了新的文献求助10
24秒前
lin完成签到,获得积分10
24秒前
大侠发布了新的文献求助10
25秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808