亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advancing common bean (Phaseolus vulgaris L.) disease detection with YOLO driven deep learning to enhance agricultural AI

相思 叶斑病 深度学习 枯萎病 目标检测 计算机科学 农业 生物 人工智能 农学 模式识别(心理学) 生态学
作者
Daniela Gómez,Michael Gomez Selvaraj,Jorge Casas,M. Kavino,Michael Rodriguez,Teshale Assefa,Anna Mlaki,Goodluck Nyakunga,Fred Kato,Clare Mukankusi,Ellena Girma,Gloria Mosquera,Victoria Arredondo,Ernesto Espitia
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66281-w
摘要

Abstract Common beans (CB), a vital source for high protein content, plays a crucial role in ensuring both nutrition and economic stability in diverse communities, particularly in Africa and Latin America. However, CB cultivation poses a significant threat to diseases that can drastically reduce yield and quality. Detecting these diseases solely based on visual symptoms is challenging, due to the variability across different pathogens and similar symptoms caused by distinct pathogens, further complicating the detection process. Traditional methods relying solely on farmers’ ability to detect diseases is inadequate, and while engaging expert pathologists and advanced laboratories is necessary, it can also be resource intensive. To address this challenge, we present a AI-driven system for rapid and cost-effective CB disease detection, leveraging state-of-the-art deep learning and object detection technologies. We utilized an extensive image dataset collected from disease hotspots in Africa and Colombia, focusing on five major diseases: Angular Leaf Spot (ALS), Common Bacterial Blight (CBB), Common Bean Mosaic Virus (CBMV), Bean Rust, and Anthracnose, covering both leaf and pod samples in real-field settings. However, pod images are only available for Angular Leaf Spot disease. The study employed data augmentation techniques and annotation at both whole and micro levels for comprehensive analysis. To train the model, we utilized three advanced YOLO architectures: YOLOv7, YOLOv8, and YOLO-NAS. Particularly for whole leaf annotations, the YOLO-NAS model achieves the highest mAP value of up to 97.9% and a recall of 98.8%, indicating superior detection accuracy. In contrast, for whole pod disease detection, YOLOv7 and YOLOv8 outperformed YOLO-NAS, with mAP values exceeding 95% and 93% recall. However, micro annotation consistently yields lower performance than whole annotation across all disease classes and plant parts, as examined by all YOLO models, highlighting an unexpected discrepancy in detection accuracy. Furthermore, we successfully deployed YOLO-NAS annotation models into an Android app, validating their effectiveness on unseen data from disease hotspots with high classification accuracy (90%). This accomplishment showcases the integration of deep learning into our production pipeline, a process known as DLOps. This innovative approach significantly reduces diagnosis time, enabling farmers to take prompt management interventions. The potential benefits extend beyond rapid diagnosis serving as an early warning system to enhance common bean productivity and quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
kk发布了新的文献求助10
14秒前
17秒前
杀殿完成签到 ,获得积分10
21秒前
一区李发布了新的文献求助10
21秒前
YamDaamCaa应助dzjin采纳,获得10
28秒前
lwm不想看文献完成签到 ,获得积分10
32秒前
一区李完成签到,获得积分10
38秒前
dzjin完成签到,获得积分10
40秒前
Hello应助欢喜的怜菡采纳,获得10
44秒前
皮皮完成签到 ,获得积分10
50秒前
52秒前
57秒前
1分钟前
小王发布了新的文献求助10
1分钟前
希望天下0贩的0应助Dz1990m采纳,获得10
1分钟前
宝贝完成签到 ,获得积分10
1分钟前
constance完成签到,获得积分20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
欣慰宛菡发布了新的文献求助10
1分钟前
1分钟前
小鸟芋圆露露完成签到 ,获得积分10
1分钟前
Yingkun_Xu完成签到,获得积分10
1分钟前
Dz1990m发布了新的文献求助10
1分钟前
zz52678完成签到,获得积分20
1分钟前
Casey完成签到 ,获得积分10
2分钟前
L_MD完成签到,获得积分10
2分钟前
Dz1990m完成签到,获得积分10
2分钟前
2分钟前
石莫言发布了新的文献求助20
2分钟前
凡`发布了新的文献求助10
2分钟前
852应助妮妮采纳,获得10
2分钟前
kk完成签到,获得积分10
2分钟前
凡`完成签到,获得积分10
2分钟前
平淡道天完成签到,获得积分10
2分钟前
追梦远行人完成签到 ,获得积分10
2分钟前
谢海亮完成签到,获得积分20
2分钟前
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963149
求助须知:如何正确求助?哪些是违规求助? 3509051
关于积分的说明 11144938
捐赠科研通 3242088
什么是DOI,文献DOI怎么找? 1791744
邀请新用户注册赠送积分活动 873127
科研通“疑难数据库(出版商)”最低求助积分说明 803622