Advancing common bean (Phaseolus vulgaris L.) disease detection with YOLO driven deep learning to enhance agricultural AI

相思 叶斑病 深度学习 枯萎病 目标检测 计算机科学 农业 生物 人工智能 农学 模式识别(心理学) 生态学
作者
Daniela Gómez,Michael Gomez Selvaraj,Jorge Casas,M. Kavino,Michael Rodriguez,Teshale Assefa,Anna Mlaki,Goodluck Nyakunga,Fred Kato,Clare Mukankusi,Ellena Girma,Gloria Mosquera,Victoria Arredondo,Ernesto Espitia
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66281-w
摘要

Abstract Common beans (CB), a vital source for high protein content, plays a crucial role in ensuring both nutrition and economic stability in diverse communities, particularly in Africa and Latin America. However, CB cultivation poses a significant threat to diseases that can drastically reduce yield and quality. Detecting these diseases solely based on visual symptoms is challenging, due to the variability across different pathogens and similar symptoms caused by distinct pathogens, further complicating the detection process. Traditional methods relying solely on farmers’ ability to detect diseases is inadequate, and while engaging expert pathologists and advanced laboratories is necessary, it can also be resource intensive. To address this challenge, we present a AI-driven system for rapid and cost-effective CB disease detection, leveraging state-of-the-art deep learning and object detection technologies. We utilized an extensive image dataset collected from disease hotspots in Africa and Colombia, focusing on five major diseases: Angular Leaf Spot (ALS), Common Bacterial Blight (CBB), Common Bean Mosaic Virus (CBMV), Bean Rust, and Anthracnose, covering both leaf and pod samples in real-field settings. However, pod images are only available for Angular Leaf Spot disease. The study employed data augmentation techniques and annotation at both whole and micro levels for comprehensive analysis. To train the model, we utilized three advanced YOLO architectures: YOLOv7, YOLOv8, and YOLO-NAS. Particularly for whole leaf annotations, the YOLO-NAS model achieves the highest mAP value of up to 97.9% and a recall of 98.8%, indicating superior detection accuracy. In contrast, for whole pod disease detection, YOLOv7 and YOLOv8 outperformed YOLO-NAS, with mAP values exceeding 95% and 93% recall. However, micro annotation consistently yields lower performance than whole annotation across all disease classes and plant parts, as examined by all YOLO models, highlighting an unexpected discrepancy in detection accuracy. Furthermore, we successfully deployed YOLO-NAS annotation models into an Android app, validating their effectiveness on unseen data from disease hotspots with high classification accuracy (90%). This accomplishment showcases the integration of deep learning into our production pipeline, a process known as DLOps. This innovative approach significantly reduces diagnosis time, enabling farmers to take prompt management interventions. The potential benefits extend beyond rapid diagnosis serving as an early warning system to enhance common bean productivity and quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mushen发布了新的文献求助10
刚刚
刚刚
ei123发布了新的文献求助10
1秒前
1秒前
2秒前
阿May完成签到 ,获得积分10
2秒前
3秒前
俭朴的可冥应助ll采纳,获得10
3秒前
JamesPei应助Aoopiy采纳,获得10
3秒前
3秒前
冷傲以珊发布了新的文献求助10
4秒前
wguanmc完成签到,获得积分10
4秒前
吕帅锜完成签到,获得积分20
4秒前
Maggie完成签到,获得积分20
4秒前
ddy发布了新的文献求助10
4秒前
jansorchen完成签到,获得积分10
5秒前
qingzhou发布了新的文献求助10
5秒前
华仔应助Desire采纳,获得10
6秒前
思源应助hh采纳,获得10
6秒前
周涛发布了新的文献求助30
7秒前
CipherSage应助阳光笑颜采纳,获得10
7秒前
兴猡应助mushen采纳,获得10
7秒前
bkagyin应助pp采纳,获得10
8秒前
8秒前
所所应助研友_LNoy5n采纳,获得10
8秒前
打打应助无辜的皮皮虾采纳,获得10
8秒前
深情雅柔完成签到,获得积分10
8秒前
9秒前
9秒前
香蕉觅云应助杰森斯坦虎采纳,获得10
9秒前
9秒前
peasandcarrots完成签到,获得积分20
11秒前
少虡完成签到,获得积分10
12秒前
小二郎应助龍焱采纳,获得10
13秒前
13秒前
文艺谷蓝完成签到,获得积分10
15秒前
15秒前
姝飞糊涂发布了新的文献求助10
15秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123986
求助须知:如何正确求助?哪些是违规求助? 2774419
关于积分的说明 7722418
捐赠科研通 2429958
什么是DOI,文献DOI怎么找? 1290833
科研通“疑难数据库(出版商)”最低求助积分说明 621957
版权声明 600283