Advancing common bean (Phaseolus vulgaris L.) disease detection with YOLO driven deep learning to enhance agricultural AI

相思 叶斑病 深度学习 枯萎病 目标检测 计算机科学 农业 生物 人工智能 农学 模式识别(心理学) 生态学
作者
Daniela Gómez,Michael Gomez Selvaraj,Jorge Casas,M. Kavino,Michael Rodriguez,Teshale Assefa,Anna Mlaki,Goodluck Nyakunga,Fred Kato,Clare Mukankusi,Ellena Girma,Gloria Mosquera,Victoria Arredondo,Ernesto Espitia
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66281-w
摘要

Abstract Common beans (CB), a vital source for high protein content, plays a crucial role in ensuring both nutrition and economic stability in diverse communities, particularly in Africa and Latin America. However, CB cultivation poses a significant threat to diseases that can drastically reduce yield and quality. Detecting these diseases solely based on visual symptoms is challenging, due to the variability across different pathogens and similar symptoms caused by distinct pathogens, further complicating the detection process. Traditional methods relying solely on farmers’ ability to detect diseases is inadequate, and while engaging expert pathologists and advanced laboratories is necessary, it can also be resource intensive. To address this challenge, we present a AI-driven system for rapid and cost-effective CB disease detection, leveraging state-of-the-art deep learning and object detection technologies. We utilized an extensive image dataset collected from disease hotspots in Africa and Colombia, focusing on five major diseases: Angular Leaf Spot (ALS), Common Bacterial Blight (CBB), Common Bean Mosaic Virus (CBMV), Bean Rust, and Anthracnose, covering both leaf and pod samples in real-field settings. However, pod images are only available for Angular Leaf Spot disease. The study employed data augmentation techniques and annotation at both whole and micro levels for comprehensive analysis. To train the model, we utilized three advanced YOLO architectures: YOLOv7, YOLOv8, and YOLO-NAS. Particularly for whole leaf annotations, the YOLO-NAS model achieves the highest mAP value of up to 97.9% and a recall of 98.8%, indicating superior detection accuracy. In contrast, for whole pod disease detection, YOLOv7 and YOLOv8 outperformed YOLO-NAS, with mAP values exceeding 95% and 93% recall. However, micro annotation consistently yields lower performance than whole annotation across all disease classes and plant parts, as examined by all YOLO models, highlighting an unexpected discrepancy in detection accuracy. Furthermore, we successfully deployed YOLO-NAS annotation models into an Android app, validating their effectiveness on unseen data from disease hotspots with high classification accuracy (90%). This accomplishment showcases the integration of deep learning into our production pipeline, a process known as DLOps. This innovative approach significantly reduces diagnosis time, enabling farmers to take prompt management interventions. The potential benefits extend beyond rapid diagnosis serving as an early warning system to enhance common bean productivity and quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助LJJ采纳,获得10
刚刚
刚刚
懵懂的翼完成签到 ,获得积分10
2秒前
枫1538发布了新的文献求助10
2秒前
2秒前
科研式发布了新的文献求助10
2秒前
顾旻发布了新的文献求助10
2秒前
2秒前
2秒前
ZDTT完成签到,获得积分10
2秒前
冯俊杰发布了新的文献求助10
2秒前
2秒前
龚涵山发布了新的文献求助10
2秒前
明理白开水完成签到,获得积分10
2秒前
辛勤冷松完成签到 ,获得积分10
3秒前
坦率铅笔发布了新的文献求助10
3秒前
蒋蒋蒋发布了新的文献求助10
3秒前
4秒前
4秒前
swh发布了新的文献求助10
4秒前
5秒前
鲤鱼鑫磊发布了新的文献求助10
5秒前
孔维铮发布了新的文献求助10
5秒前
chen le完成签到,获得积分10
6秒前
这么滴吧发布了新的文献求助10
6秒前
和谐面包发布了新的文献求助10
6秒前
奋斗瑶发布了新的文献求助10
7秒前
小蘑菇应助孙友浩采纳,获得10
7秒前
7秒前
7秒前
852应助扳手已就位采纳,获得10
7秒前
fff发布了新的文献求助10
7秒前
lnd完成签到 ,获得积分10
8秒前
幻影发布了新的文献求助10
8秒前
完美世界应助liao采纳,获得10
8秒前
伊萨卡完成签到 ,获得积分10
8秒前
瘦瘦怀亦发布了新的文献求助10
10秒前
党丹发布了新的文献求助10
10秒前
Sylvia卉完成签到,获得积分10
10秒前
格格星发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005236
求助须知:如何正确求助?哪些是违规求助? 4248931
关于积分的说明 13239041
捐赠科研通 4048486
什么是DOI,文献DOI怎么找? 2214899
邀请新用户注册赠送积分活动 1224821
关于科研通互助平台的介绍 1145241