已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advancing common bean (Phaseolus vulgaris L.) disease detection with YOLO driven deep learning to enhance agricultural AI

相思 叶斑病 深度学习 枯萎病 目标检测 计算机科学 农业 生物 人工智能 农学 模式识别(心理学) 生态学
作者
Daniela Gómez,Michael Gomez Selvaraj,Jorge Casas,M. Kavino,Michael Rodriguez,Teshale Assefa,Anna Mlaki,Goodluck Nyakunga,Fred Kato,Clare Mukankusi,Ellena Girma,Gloria Mosquera,Victoria Arredondo,Ernesto Espitia
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66281-w
摘要

Abstract Common beans (CB), a vital source for high protein content, plays a crucial role in ensuring both nutrition and economic stability in diverse communities, particularly in Africa and Latin America. However, CB cultivation poses a significant threat to diseases that can drastically reduce yield and quality. Detecting these diseases solely based on visual symptoms is challenging, due to the variability across different pathogens and similar symptoms caused by distinct pathogens, further complicating the detection process. Traditional methods relying solely on farmers’ ability to detect diseases is inadequate, and while engaging expert pathologists and advanced laboratories is necessary, it can also be resource intensive. To address this challenge, we present a AI-driven system for rapid and cost-effective CB disease detection, leveraging state-of-the-art deep learning and object detection technologies. We utilized an extensive image dataset collected from disease hotspots in Africa and Colombia, focusing on five major diseases: Angular Leaf Spot (ALS), Common Bacterial Blight (CBB), Common Bean Mosaic Virus (CBMV), Bean Rust, and Anthracnose, covering both leaf and pod samples in real-field settings. However, pod images are only available for Angular Leaf Spot disease. The study employed data augmentation techniques and annotation at both whole and micro levels for comprehensive analysis. To train the model, we utilized three advanced YOLO architectures: YOLOv7, YOLOv8, and YOLO-NAS. Particularly for whole leaf annotations, the YOLO-NAS model achieves the highest mAP value of up to 97.9% and a recall of 98.8%, indicating superior detection accuracy. In contrast, for whole pod disease detection, YOLOv7 and YOLOv8 outperformed YOLO-NAS, with mAP values exceeding 95% and 93% recall. However, micro annotation consistently yields lower performance than whole annotation across all disease classes and plant parts, as examined by all YOLO models, highlighting an unexpected discrepancy in detection accuracy. Furthermore, we successfully deployed YOLO-NAS annotation models into an Android app, validating their effectiveness on unseen data from disease hotspots with high classification accuracy (90%). This accomplishment showcases the integration of deep learning into our production pipeline, a process known as DLOps. This innovative approach significantly reduces diagnosis time, enabling farmers to take prompt management interventions. The potential benefits extend beyond rapid diagnosis serving as an early warning system to enhance common bean productivity and quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
FashionBoy应助Lavender采纳,获得10
刚刚
刚刚
cc完成签到,获得积分10
1秒前
小桃枝发布了新的文献求助10
2秒前
zeng完成签到,获得积分10
3秒前
moon完成签到,获得积分10
3秒前
3秒前
英姑应助大吉采纳,获得10
4秒前
4秒前
Hello应助wdd采纳,获得10
4秒前
CodeCraft应助小刘哥儿采纳,获得10
4秒前
5秒前
羽羽完成签到 ,获得积分10
5秒前
Raven应助胡豆采纳,获得10
5秒前
6秒前
xiaomeng完成签到 ,获得积分10
6秒前
逃跑冰蓝发布了新的文献求助10
6秒前
俭朴映阳发布了新的文献求助10
7秒前
打打应助Zyc采纳,获得10
9秒前
阿明留下了新的社区评论
10秒前
11秒前
Criminology34应助小刘哥儿采纳,获得10
12秒前
小林驳回了wjk应助
13秒前
13秒前
13秒前
科研通AI6应助正常采纳,获得10
14秒前
葱葱完成签到,获得积分10
15秒前
味精发布了新的文献求助10
16秒前
17秒前
17秒前
健康的千易完成签到,获得积分10
17秒前
Criminology34应助小桃枝采纳,获得10
18秒前
大吉发布了新的文献求助10
19秒前
19秒前
Lucas应助小刘哥儿采纳,获得10
19秒前
19秒前
6666应助荀万声采纳,获得10
20秒前
21秒前
pinkchips完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312489
求助须知:如何正确求助?哪些是违规求助? 4456148
关于积分的说明 13865749
捐赠科研通 4344664
什么是DOI,文献DOI怎么找? 2386013
邀请新用户注册赠送积分活动 1380317
关于科研通互助平台的介绍 1348719