Advancing common bean (Phaseolus vulgaris L.) disease detection with YOLO driven deep learning to enhance agricultural AI

相思 叶斑病 深度学习 枯萎病 目标检测 计算机科学 农业 生物 人工智能 农学 模式识别(心理学) 生态学
作者
Daniela Gómez,Michael Gomez Selvaraj,Jorge Casas,M. Kavino,Michael Rodriguez,Teshale Assefa,Anna Mlaki,Goodluck Nyakunga,Fred Kato,Clare Mukankusi,Ellena Girma,Gloria Mosquera,Victoria Arredondo,Ernesto Espitia
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66281-w
摘要

Abstract Common beans (CB), a vital source for high protein content, plays a crucial role in ensuring both nutrition and economic stability in diverse communities, particularly in Africa and Latin America. However, CB cultivation poses a significant threat to diseases that can drastically reduce yield and quality. Detecting these diseases solely based on visual symptoms is challenging, due to the variability across different pathogens and similar symptoms caused by distinct pathogens, further complicating the detection process. Traditional methods relying solely on farmers’ ability to detect diseases is inadequate, and while engaging expert pathologists and advanced laboratories is necessary, it can also be resource intensive. To address this challenge, we present a AI-driven system for rapid and cost-effective CB disease detection, leveraging state-of-the-art deep learning and object detection technologies. We utilized an extensive image dataset collected from disease hotspots in Africa and Colombia, focusing on five major diseases: Angular Leaf Spot (ALS), Common Bacterial Blight (CBB), Common Bean Mosaic Virus (CBMV), Bean Rust, and Anthracnose, covering both leaf and pod samples in real-field settings. However, pod images are only available for Angular Leaf Spot disease. The study employed data augmentation techniques and annotation at both whole and micro levels for comprehensive analysis. To train the model, we utilized three advanced YOLO architectures: YOLOv7, YOLOv8, and YOLO-NAS. Particularly for whole leaf annotations, the YOLO-NAS model achieves the highest mAP value of up to 97.9% and a recall of 98.8%, indicating superior detection accuracy. In contrast, for whole pod disease detection, YOLOv7 and YOLOv8 outperformed YOLO-NAS, with mAP values exceeding 95% and 93% recall. However, micro annotation consistently yields lower performance than whole annotation across all disease classes and plant parts, as examined by all YOLO models, highlighting an unexpected discrepancy in detection accuracy. Furthermore, we successfully deployed YOLO-NAS annotation models into an Android app, validating their effectiveness on unseen data from disease hotspots with high classification accuracy (90%). This accomplishment showcases the integration of deep learning into our production pipeline, a process known as DLOps. This innovative approach significantly reduces diagnosis time, enabling farmers to take prompt management interventions. The potential benefits extend beyond rapid diagnosis serving as an early warning system to enhance common bean productivity and quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燕子发布了新的文献求助10
1秒前
坚强的傲南完成签到 ,获得积分10
1秒前
schuang完成签到,获得积分0
1秒前
2秒前
宗友绿发布了新的文献求助10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
一颗松应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
一颗松应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
4秒前
lasalu应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI5应助无限冷之采纳,获得30
4秒前
zhengjing发布了新的文献求助10
5秒前
wangxiaoli0991完成签到 ,获得积分10
5秒前
浮浮世世发布了新的文献求助10
5秒前
Iris完成签到,获得积分10
6秒前
冯冯完成签到 ,获得积分10
6秒前
7秒前
陈一口完成签到 ,获得积分10
7秒前
燕子完成签到,获得积分10
7秒前
樱铃完成签到,获得积分10
8秒前
吃一口芝士完成签到 ,获得积分10
8秒前
小北发布了新的文献求助10
8秒前
顺利绮菱发布了新的文献求助10
8秒前
kekesun发布了新的文献求助200
9秒前
9秒前
zongsr完成签到,获得积分20
9秒前
ACE发布了新的文献求助10
11秒前
987发布了新的文献求助30
12秒前
13秒前
星star完成签到 ,获得积分10
13秒前
领导范儿应助宗友绿采纳,获得10
14秒前
相信相信的力量完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5177371
求助须知:如何正确求助?哪些是违规求助? 4365986
关于积分的说明 13593843
捐赠科研通 4216077
什么是DOI,文献DOI怎么找? 2312401
邀请新用户注册赠送积分活动 1311169
关于科研通互助平台的介绍 1259313