A novel ensemble learning approach to extract urban impervious surface based on machine learning algorithms using SAR and optical data

随机森林 不透水面 计算机科学 集成学习 人工智能 机器学习 Python(编程语言) 土地覆盖 梯度升压 Boosting(机器学习) 遥感 阿达布思 分类器(UML) 数据挖掘 地理 土地利用 土木工程 工程类 操作系统 生物 生态学
作者
Muhammad Nasar Ahmad,NULL AUTHOR_ID,Xiongwu Xiao,NULL AUTHOR_ID,Akib Javed,Iffat Ara
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 104013-104013
标识
DOI:10.1016/j.jag.2024.104013
摘要

Accurate urban impervious surface (UIS) extraction from open-source remote sensing data remains challenging, especially for cities with heterogeneous climatic backgrounds. Contemporary, state-of-the-art techniques achieve promising results at a global scale, but accuracy is compromised at the city level. Therefore, a ensemble machine learning approach using open-source Optical-SAR remote sensing datasets was implemented to enhance the accuracy of UIS mapping. Initially, we integrated optical and radar datasets with modified urban indices to generate input features. Then, we applied four ensemble machine learning algorithms, including AdaBoost, Gradient Boost (GB), Extreme Gradient Boosting (XGBoost), and Random Forest (RF), and fine-tuned them via a soft voting ensemble approach. The optimized UISEM approach showed a model accuracy of 98%. The UISEM method achieved a classification accuracy of 92% and consistently performed across 32 cities globally with heterogeneous climatic zones. Regarding accuracy and predictive power, the XGB ensemble classifier outperformed other ML classifiers in mapping UIS. Furthermore, a comparative analysis against three well-known datasets (ESA World Cover, ESRI Land Cover, and Dynamic World) was also performed. The proposed UISEM model outperformed renowned global datasets with a 92% classification accuracy, followed by DW with 83%, ESA with 86%, and ESRI with 82%. In the future, developing a spatial–temporal version of UISEM can support diverse urban applications globally. The datasets and (GEE and Python) codes are available at https://github.com/mnasarahmad/UISEM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真飞瑶发布了新的文献求助10
刚刚
咩咩完成签到,获得积分10
刚刚
1111应助霸气映之采纳,获得10
刚刚
xxx应助霸气映之采纳,获得10
刚刚
刚刚
1秒前
1秒前
163完成签到,获得积分10
2秒前
酷波er应助Miley采纳,获得10
3秒前
3秒前
o30发布了新的文献求助10
3秒前
共享精神应助南兮采纳,获得10
3秒前
barrycream完成签到,获得积分10
3秒前
5秒前
5秒前
5秒前
安静曼寒发布了新的文献求助10
5秒前
玉洁发布了新的文献求助10
5秒前
6秒前
jx完成签到,获得积分10
6秒前
666完成签到 ,获得积分10
7秒前
Jasper应助Dal采纳,获得10
7秒前
shuiyu完成签到,获得积分10
8秒前
8秒前
8秒前
朱建军应助ddfighting采纳,获得10
9秒前
9秒前
9秒前
无眠宇宙完成签到,获得积分10
9秒前
Owen应助xiaohu6311采纳,获得10
10秒前
SYLH应助djxdjt采纳,获得10
10秒前
科研通AI2S应助djxdjt采纳,获得10
10秒前
yznfly应助djxdjt采纳,获得30
10秒前
坦率的无春完成签到,获得积分10
11秒前
11秒前
无眠宇宙发布了新的文献求助10
12秒前
慕青应助栗栗子采纳,获得10
12秒前
12秒前
小王发布了新的文献求助10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969383
求助须知:如何正确求助?哪些是违规求助? 3514211
关于积分的说明 11172730
捐赠科研通 3249476
什么是DOI,文献DOI怎么找? 1794909
邀请新用户注册赠送积分活动 875441
科研通“疑难数据库(出版商)”最低求助积分说明 804827