重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A novel ensemble learning approach to extract urban impervious surface based on machine learning algorithms using SAR and optical data

随机森林 不透水面 计算机科学 集成学习 人工智能 机器学习 Python(编程语言) 土地覆盖 梯度升压 Boosting(机器学习) 遥感 阿达布思 分类器(UML) 数据挖掘 地理 土地利用 生态学 生物 土木工程 工程类 操作系统
作者
Muhammad Nasar Ahmad,NULL AUTHOR_ID,Xiongwu Xiao,NULL AUTHOR_ID,Akib Javed,Iffat Ara
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 104013-104013
标识
DOI:10.1016/j.jag.2024.104013
摘要

Accurate urban impervious surface (UIS) extraction from open-source remote sensing data remains challenging, especially for cities with heterogeneous climatic backgrounds. Contemporary, state-of-the-art techniques achieve promising results at a global scale, but accuracy is compromised at the city level. Therefore, a ensemble machine learning approach using open-source Optical-SAR remote sensing datasets was implemented to enhance the accuracy of UIS mapping. Initially, we integrated optical and radar datasets with modified urban indices to generate input features. Then, we applied four ensemble machine learning algorithms, including AdaBoost, Gradient Boost (GB), Extreme Gradient Boosting (XGBoost), and Random Forest (RF), and fine-tuned them via a soft voting ensemble approach. The optimized UISEM approach showed a model accuracy of 98%. The UISEM method achieved a classification accuracy of 92% and consistently performed across 32 cities globally with heterogeneous climatic zones. Regarding accuracy and predictive power, the XGB ensemble classifier outperformed other ML classifiers in mapping UIS. Furthermore, a comparative analysis against three well-known datasets (ESA World Cover, ESRI Land Cover, and Dynamic World) was also performed. The proposed UISEM model outperformed renowned global datasets with a 92% classification accuracy, followed by DW with 83%, ESA with 86%, and ESRI with 82%. In the future, developing a spatial–temporal version of UISEM can support diverse urban applications globally. The datasets and (GEE and Python) codes are available at https://github.com/mnasarahmad/UISEM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bae关闭了bae文献求助
刚刚
hey应助tyche采纳,获得10
刚刚
多看文献完成签到,获得积分10
1秒前
JamesPei应助猪猪hero采纳,获得10
1秒前
1秒前
麞欎完成签到,获得积分10
2秒前
2秒前
坚定晓兰应助舒服的雁兰采纳,获得10
2秒前
小蘑菇应助舒服的雁兰采纳,获得10
2秒前
乐乐应助蒋蒋采纳,获得10
2秒前
科研通AI6应助要减肥采纳,获得10
2秒前
haha发布了新的文献求助10
2秒前
3秒前
Hou完成签到,获得积分10
3秒前
3秒前
kk0612发布了新的文献求助10
4秒前
苹果寻菱完成签到,获得积分10
4秒前
5秒前
大胆夜天发布了新的文献求助10
5秒前
vffg发布了新的文献求助10
5秒前
123noo发布了新的文献求助10
5秒前
5秒前
6秒前
zain发布了新的文献求助10
6秒前
二中所长完成签到,获得积分10
6秒前
6秒前
lvbowen完成签到,获得积分10
7秒前
小阿琳发布了新的文献求助10
7秒前
7秒前
大个应助lllllsy采纳,获得10
8秒前
8秒前
tleeny完成签到,获得积分10
8秒前
唐一发布了新的文献求助10
8秒前
8秒前
俊逸柏柳发布了新的文献求助10
8秒前
zdfang关注了科研通微信公众号
8秒前
猪猪hero发布了新的文献求助10
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654