Artificial intelligence models to predict optimal trade-off on construction management

计算机科学 人工智能 运筹学 工程类
作者
Pham Vu Hong Son,Luu Ngoc Quynh Khoi
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
标识
DOI:10.1108/ecam-06-2024-0698
摘要

Purpose This research aims to introduce a novel algorithm, the Chaotic Giant Pacific Octopus Optimizer (CGPOO) and demonstrate framework includes four key aspects: time, cost, quality and safety trade-off (TCQST). Design/methodology/approach Artificial intelligence is causing a big disruption in the construction management. It is being used to building projects to enhance efficiency, safety and decision-making. This research compared the CGPOO method to those of other algorithms, such as the Chaotic Slime Mold Algorithm (CSMA), the Chaotic Salps Swarm Algorithm (CSSA) and the Chaotic Whale Optimization Algorithm (CWOA) and assessed the efficacy of the method using statistical analysis and evaluation indicators such as Hyper-volumn (HV), Spread (Sp), Computational Time (CT) and C-metric. Findings The analysis demonstrates that using CGPOO outperforms standalone methods chosen from the literature in terms of outcomes. It is discovered that the CGPOO solution possibilities for each factors are more efficient and beneficial than the comparison algorithms. Moreover, the CGPOO model performs better than the other algorithms with quality indices C-metric, Sp, HV and CT of 0.534, 0.531, 0.891 and 101. Originality/value The article presents a novel hybrid CGPOO that permits multi-factor trade-offs in construction management with the goal of surpassing the analyzed models and optimizing the optimal solution in the search space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
czyzyzy完成签到,获得积分10
刚刚
no_one发布了新的文献求助10
刚刚
齐多达发布了新的文献求助10
1秒前
LiShin发布了新的文献求助10
2秒前
12完成签到,获得积分10
3秒前
5秒前
LiShin完成签到,获得积分10
7秒前
7秒前
jimmyhui完成签到,获得积分10
9秒前
yuaasusanaann发布了新的文献求助10
10秒前
呆萌的鼠标完成签到 ,获得积分0
11秒前
11秒前
12秒前
yznfly应助ling采纳,获得30
12秒前
rafa完成签到 ,获得积分10
13秒前
Dasiliy发布了新的文献求助10
13秒前
14秒前
少堂完成签到,获得积分10
15秒前
htt完成签到 ,获得积分10
15秒前
横扫一切牛鬼蛇神完成签到,获得积分10
15秒前
16秒前
大宝哥哥完成签到 ,获得积分10
16秒前
17秒前
科研通AI2S应助李麟采纳,获得10
18秒前
清新的雁凡应助李麟采纳,获得10
18秒前
小鱼儿发布了新的文献求助10
18秒前
ysw完成签到,获得积分10
18秒前
iNk应助少堂采纳,获得50
19秒前
FashionBoy应助科研鸟采纳,获得10
21秒前
核桃应助猫样少女采纳,获得10
21秒前
21秒前
奋斗的若云完成签到,获得积分10
21秒前
22秒前
科研通AI5应助大力芸采纳,获得10
22秒前
22秒前
Uload完成签到,获得积分10
22秒前
美丽的依霜完成签到 ,获得积分10
22秒前
23秒前
24秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403