已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Distributionally Robust Newsvendor Under Stochastic Dominance with a Feature-Based Application

报童模式 模棱两可 随机优势 计算机科学 数学优化 稳健优化 数学 供应链 政治学 法学 程序设计语言
作者
Mingyang Fu,Xiaobo Li,Lianmin Zhang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (5): 1962-1977
标识
DOI:10.1287/msom.2023.0159
摘要

Problem definition: In this paper, we study the newsvendor problem under some distributional ambiguity sets and explore their relations. Additionally, we explore the benefits of implementing this robust solution in the feature-based newsvendor problem. Methodology and results: We propose a new type of discrepancy-based ambiguity set, the JW ambiguity set, and analyze it within the framework of first-order stochastic dominance. We show that the distributionally robust optimization (DRO) problem with this ambiguity set admits a closed-form solution for the newsvendor loss. This result also implies that the newsvendor problem under the well-known infinity-Wasserstein ambiguity set and Lévy ball ambiguity set admit closed-form inventory levels as a by-product. In the application of feature-based newsvendor, we adopt general kernel methods to estimate the conditional demand distribution and apply our proposed DRO solutions to account for the estimation error. Managerial implications: The closed-form solutions enable an efficient computation of optimal inventory levels. In addition, we explore the property of optimal robust inventory levels with respect to the nonrobust version via concepts of perceived critical ratio and mean repulsion. The results of numerical experiments and the case study indicate that the proposed model outperforms other state-of-the-art approaches, particularly in environments where demand is influenced by covariates and difficult to estimate. Funding: X. Li is supported by the Singapore Ministry of Education [Tier 1 Grant 23-0619-P0001, 24-0500-A0001] and National Natural Science Foundation of China [Grant 72331004]. L. Zhang is partially supported by the National Natural Science Foundation of China [Grants 72171156 and 72231002] and the Hong Kong Research Grants Council [Grant 16212419]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0159 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nanananana完成签到 ,获得积分10
8秒前
9秒前
cocolu应助快乐的星月采纳,获得10
9秒前
mpenny77完成签到,获得积分10
11秒前
12秒前
14秒前
14秒前
初雪完成签到,获得积分10
17秒前
lsong完成签到,获得积分10
18秒前
啦啦啦发布了新的文献求助10
18秒前
全栾发布了新的文献求助10
19秒前
qiang完成签到,获得积分20
20秒前
21秒前
25秒前
yar应助麦麦采纳,获得10
26秒前
26秒前
酷波er应助全栾采纳,获得10
26秒前
26秒前
饱满贞发布了新的文献求助10
26秒前
真的不会完成签到,获得积分10
26秒前
快乐寄风完成签到 ,获得积分10
26秒前
Ava应助阿九采纳,获得10
27秒前
我cr发布了新的文献求助10
28秒前
川川完成签到,获得积分10
28秒前
辰勃发布了新的文献求助10
30秒前
30秒前
qiang发布了新的文献求助20
31秒前
31秒前
不安毛豆发布了新的文献求助10
31秒前
全栾完成签到,获得积分20
33秒前
Gail完成签到 ,获得积分10
33秒前
34秒前
ding应助阿九采纳,获得10
35秒前
35秒前
想发sci发布了新的文献求助30
36秒前
辰勃完成签到,获得积分10
37秒前
HuLL发布了新的文献求助10
37秒前
LH发布了新的文献求助10
37秒前
吖牙发布了新的文献求助10
41秒前
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310962
求助须知:如何正确求助?哪些是违规求助? 2943713
关于积分的说明 8516191
捐赠科研通 2619029
什么是DOI,文献DOI怎么找? 1431813
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649752