Distributionally Robust Newsvendor Under Stochastic Dominance with a Feature-Based Application

报童模式 模棱两可 随机优势 计算机科学 数学优化 稳健优化 数学 供应链 政治学 程序设计语言 法学
作者
Mingyang Fu,Xiaobo Li,Lianmin Zhang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (5): 1962-1977 被引量:3
标识
DOI:10.1287/msom.2023.0159
摘要

Problem definition: In this paper, we study the newsvendor problem under some distributional ambiguity sets and explore their relations. Additionally, we explore the benefits of implementing this robust solution in the feature-based newsvendor problem. Methodology and results: We propose a new type of discrepancy-based ambiguity set, the JW ambiguity set, and analyze it within the framework of first-order stochastic dominance. We show that the distributionally robust optimization (DRO) problem with this ambiguity set admits a closed-form solution for the newsvendor loss. This result also implies that the newsvendor problem under the well-known infinity-Wasserstein ambiguity set and Lévy ball ambiguity set admit closed-form inventory levels as a by-product. In the application of feature-based newsvendor, we adopt general kernel methods to estimate the conditional demand distribution and apply our proposed DRO solutions to account for the estimation error. Managerial implications: The closed-form solutions enable an efficient computation of optimal inventory levels. In addition, we explore the property of optimal robust inventory levels with respect to the nonrobust version via concepts of perceived critical ratio and mean repulsion. The results of numerical experiments and the case study indicate that the proposed model outperforms other state-of-the-art approaches, particularly in environments where demand is influenced by covariates and difficult to estimate. Funding: X. Li is supported by the Singapore Ministry of Education [Tier 1 Grant 23-0619-P0001, 24-0500-A0001] and National Natural Science Foundation of China [Grant 72331004]. L. Zhang is partially supported by the National Natural Science Foundation of China [Grants 72171156 and 72231002] and the Hong Kong Research Grants Council [Grant 16212419]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0159 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋斤发布了新的文献求助10
2秒前
2秒前
赘婿应助烧饼采纳,获得10
2秒前
2秒前
LXP完成签到,获得积分10
3秒前
灵巧的仙人掌完成签到 ,获得积分20
3秒前
4秒前
4秒前
5秒前
Xiaque发布了新的文献求助10
6秒前
邓佳鑫Alan应助gy采纳,获得10
7秒前
害羞的天真完成签到 ,获得积分10
7秒前
阿蛮完成签到,获得积分10
7秒前
8秒前
Conner完成签到 ,获得积分10
9秒前
霰弹枪发布了新的文献求助10
9秒前
huzi完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
qqqqqq完成签到,获得积分10
10秒前
小杭76完成签到,获得积分0
12秒前
科研通AI2S应助qqqqqq采纳,获得10
14秒前
英勇的红酒完成签到 ,获得积分10
16秒前
俍璟完成签到 ,获得积分10
16秒前
西奥牧马完成签到 ,获得积分10
17秒前
苑小苑完成签到,获得积分10
17秒前
Rqbnicsp完成签到,获得积分10
18秒前
完美世界应助段YY采纳,获得50
18秒前
量子星尘发布了新的文献求助10
19秒前
跳跃完成签到,获得积分10
21秒前
踏实的盼秋完成签到 ,获得积分10
22秒前
超越俗尘完成签到,获得积分10
22秒前
路先生完成签到,获得积分10
22秒前
chemhub完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
YO完成签到 ,获得积分10
24秒前
科研王帝同学完成签到 ,获得积分10
24秒前
可爱冰绿完成签到,获得积分10
25秒前
木月月复习了嘛完成签到,获得积分10
26秒前
TanXu完成签到,获得积分10
27秒前
长孙烙完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658527
求助须知:如何正确求助?哪些是违规求助? 4822513
关于积分的说明 15081782
捐赠科研通 4817023
什么是DOI,文献DOI怎么找? 2577908
邀请新用户注册赠送积分活动 1532725
关于科研通互助平台的介绍 1491434