Distributionally Robust Newsvendor Under Stochastic Dominance with a Feature-Based Application

报童模式 模棱两可 随机优势 计算机科学 数学优化 稳健优化 数学 供应链 政治学 程序设计语言 法学
作者
Mingyang Fu,Xiaobo Li,Lianmin Zhang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (5): 1962-1977 被引量:3
标识
DOI:10.1287/msom.2023.0159
摘要

Problem definition: In this paper, we study the newsvendor problem under some distributional ambiguity sets and explore their relations. Additionally, we explore the benefits of implementing this robust solution in the feature-based newsvendor problem. Methodology and results: We propose a new type of discrepancy-based ambiguity set, the JW ambiguity set, and analyze it within the framework of first-order stochastic dominance. We show that the distributionally robust optimization (DRO) problem with this ambiguity set admits a closed-form solution for the newsvendor loss. This result also implies that the newsvendor problem under the well-known infinity-Wasserstein ambiguity set and Lévy ball ambiguity set admit closed-form inventory levels as a by-product. In the application of feature-based newsvendor, we adopt general kernel methods to estimate the conditional demand distribution and apply our proposed DRO solutions to account for the estimation error. Managerial implications: The closed-form solutions enable an efficient computation of optimal inventory levels. In addition, we explore the property of optimal robust inventory levels with respect to the nonrobust version via concepts of perceived critical ratio and mean repulsion. The results of numerical experiments and the case study indicate that the proposed model outperforms other state-of-the-art approaches, particularly in environments where demand is influenced by covariates and difficult to estimate. Funding: X. Li is supported by the Singapore Ministry of Education [Tier 1 Grant 23-0619-P0001, 24-0500-A0001] and National Natural Science Foundation of China [Grant 72331004]. L. Zhang is partially supported by the National Natural Science Foundation of China [Grants 72171156 and 72231002] and the Hong Kong Research Grants Council [Grant 16212419]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0159 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万1发布了新的文献求助10
1秒前
1秒前
2秒前
领导范儿应助酷炫贞采纳,获得10
2秒前
芊芊墨完成签到,获得积分10
2秒前
NTw_wzw发布了新的文献求助10
3秒前
鱼鱼子发布了新的文献求助10
3秒前
江上发布了新的文献求助10
5秒前
鸡毛完成签到,获得积分10
5秒前
ying完成签到,获得积分10
5秒前
5秒前
6秒前
大个应助甜甜亦丝采纳,获得10
6秒前
ANG发布了新的文献求助10
7秒前
杜胤江关注了科研通微信公众号
8秒前
HH发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
丘比特应助从容曼文采纳,获得10
12秒前
汉堡包应助年轻的如霜采纳,获得10
12秒前
13秒前
13秒前
13秒前
sadascaqwqw发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
深情安青应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
yaohuici完成签到,获得积分20
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720320
求助须知:如何正确求助?哪些是违规求助? 5259567
关于积分的说明 15290807
捐赠科研通 4869734
什么是DOI,文献DOI怎么找? 2614988
邀请新用户注册赠送积分活动 1564964
关于科研通互助平台的介绍 1522137