Prediction and interpretive of motor vehicle traffic crashes severity based on random forest optimized by meta-heuristic algorithm

随机森林 可解释性 计算机科学 预测建模 启发式 排名(信息检索) 撞车 毒物控制 机器学习 数据挖掘 人工智能 医学 环境卫生 程序设计语言
作者
Li Wang,Yikun Su,Ze-chen Zheng,Liang Xu
出处
期刊:Heliyon [Elsevier]
卷期号:10 (16): e35595-e35595
标识
DOI:10.1016/j.heliyon.2024.e35595
摘要

Providing accurate prediction of the severity of traffic collisions is vital to improve the efficiency of emergencies and reduce casualties, accordingly improving traffic safety and reducing traffic congestion. However, the issue of both the predictive accuracy of the model and the interpretability of predicted outcomes has remained a persistent challenge. We propose a Random Forest optimized by a Meta-heuristic algorithm prediction framework that integrates the spatiotemporal characteristics of crashes. Through predictive analysis of motor vehicle traffic crash data on interstate highways within the United States in 2020, we compared the accuracy of various ensemble models and single-classification prediction models. The results show that the Random Forest (RF) model optimized by the Crown Porcupine Optimizer (CPO) has the best prediction results, and the accuracy, recall, f1 score, and precision can reach more than 90 %. We found that factors such as Temperature and Weather are closely related to vehicle traffic crashes. Closely related indicators were analyzed interpretatively using a geographic information system (GIS) based on the characteristic importance ranking of the results. The framework enables more accurate prediction of motor vehicle traffic crashes and discovers the important factors leading to motor vehicle traffic crashes with an explanation. The study proposes that in some areas consideration should be given to adding measures such as nighttime lighting devices and nighttime fatigue driving alert devices to ensure safe driving. It offers references for policymakers to address traffic management and urban development issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助搞怪的思卉采纳,获得10
刚刚
毕个业完成签到 ,获得积分10
刚刚
炙热美女发布了新的文献求助10
1秒前
Titanium发布了新的文献求助30
1秒前
感觉完成签到,获得积分10
2秒前
山丘完成签到,获得积分10
2秒前
ChenXinde发布了新的文献求助10
3秒前
研究生发布了新的文献求助10
3秒前
Yangzx完成签到,获得积分10
3秒前
3秒前
萝卜沾不沾完成签到,获得积分20
3秒前
4秒前
清风明月完成签到,获得积分10
4秒前
倾卿如玉完成签到 ,获得积分10
4秒前
等到放晴的那天完成签到,获得积分10
5秒前
Damia完成签到,获得积分10
6秒前
KD完成签到,获得积分10
6秒前
6秒前
科目三应助向上采纳,获得10
6秒前
情怀应助库洛洛采纳,获得10
6秒前
英子爱阿亮完成签到,获得积分10
6秒前
6秒前
WXT完成签到,获得积分10
6秒前
7秒前
zckkk完成签到,获得积分10
7秒前
lemon完成签到,获得积分10
7秒前
臭臭完成签到,获得积分10
8秒前
林伯格完成签到,获得积分10
9秒前
无语的冬易完成签到,获得积分10
10秒前
fbh1完成签到,获得积分10
10秒前
肉哥完成签到,获得积分10
10秒前
10秒前
罗百事完成签到 ,获得积分10
11秒前
wanci应助多情怜蕾采纳,获得10
12秒前
Dannerys完成签到 ,获得积分10
12秒前
TCR完成签到,获得积分10
13秒前
13秒前
YuZhichao发布了新的文献求助10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147162
求助须知:如何正确求助?哪些是违规求助? 2798435
关于积分的说明 7829030
捐赠科研通 2455138
什么是DOI,文献DOI怎么找? 1306576
科研通“疑难数据库(出版商)”最低求助积分说明 627838
版权声明 601567