Prediction and interpretive of motor vehicle traffic crashes severity based on random forest optimized by meta-heuristic algorithm

随机森林 可解释性 计算机科学 预测建模 启发式 排名(信息检索) 撞车 毒物控制 机器学习 数据挖掘 人工智能 医学 环境卫生 程序设计语言
作者
Li Wang,Yikun Su,Ze-chen Zheng,Liang Xu
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (16): e35595-e35595
标识
DOI:10.1016/j.heliyon.2024.e35595
摘要

Providing accurate prediction of the severity of traffic collisions is vital to improve the efficiency of emergencies and reduce casualties, accordingly improving traffic safety and reducing traffic congestion. However, the issue of both the predictive accuracy of the model and the interpretability of predicted outcomes has remained a persistent challenge. We propose a Random Forest optimized by a Meta-heuristic algorithm prediction framework that integrates the spatiotemporal characteristics of crashes. Through predictive analysis of motor vehicle traffic crash data on interstate highways within the United States in 2020, we compared the accuracy of various ensemble models and single-classification prediction models. The results show that the Random Forest (RF) model optimized by the Crown Porcupine Optimizer (CPO) has the best prediction results, and the accuracy, recall, f1 score, and precision can reach more than 90 %. We found that factors such as Temperature and Weather are closely related to vehicle traffic crashes. Closely related indicators were analyzed interpretatively using a geographic information system (GIS) based on the characteristic importance ranking of the results. The framework enables more accurate prediction of motor vehicle traffic crashes and discovers the important factors leading to motor vehicle traffic crashes with an explanation. The study proposes that in some areas consideration should be given to adding measures such as nighttime lighting devices and nighttime fatigue driving alert devices to ensure safe driving. It offers references for policymakers to address traffic management and urban development issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cxzdm发布了新的文献求助30
刚刚
雨淋沐风完成签到,获得积分10
1秒前
1秒前
墨菲特发布了新的文献求助10
1秒前
Duqianying发布了新的文献求助20
1秒前
铝离子完成签到,获得积分10
2秒前
Akim应助欧欧拉格朗日采纳,获得10
2秒前
song发布了新的文献求助10
2秒前
碧蓝老虎完成签到,获得积分10
2秒前
2秒前
3秒前
Wesley完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
桐桐应助庄冬丽采纳,获得10
5秒前
韦恩发布了新的文献求助30
5秒前
5秒前
6秒前
zzx完成签到,获得积分10
6秒前
布丁大师完成签到,获得积分20
7秒前
无私书雪发布了新的文献求助10
7秒前
JCP发布了新的文献求助10
7秒前
8秒前
光头强发布了新的文献求助10
8秒前
大模型应助不准吃烤肉采纳,获得10
8秒前
领导范儿应助梓榆采纳,获得10
9秒前
刘欢发布了新的文献求助10
9秒前
9秒前
10秒前
燕小丙完成签到,获得积分10
10秒前
10秒前
布丁大师发布了新的文献求助10
11秒前
经年完成签到,获得积分10
11秒前
mmj完成签到,获得积分10
11秒前
13秒前
Duqianying完成签到,获得积分10
13秒前
桐桐应助有韵好天气采纳,获得10
13秒前
乖猫要努力应助dede采纳,获得10
14秒前
轻松的莛发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970062
求助须知:如何正确求助?哪些是违规求助? 3514782
关于积分的说明 11175968
捐赠科研通 3250119
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804951