Prediction of chemical-induced acute toxicity using in vitro assay data and chemical structure

毒性 急性毒性 背景(考古学) 体内 药理学 体外毒理学 化学 毒理 医学 生物 内科学 生物技术 古生物学
作者
Jia Li,Tuan Xu,Deborah K. Ngan,Menghang Xia,Jinghua Zhao,Srilatha Sakamuru,Anton Simeonov,Ruili Huang
出处
期刊:Toxicology and Applied Pharmacology [Elsevier BV]
卷期号:492: 117098-117098
标识
DOI:10.1016/j.taap.2024.117098
摘要

Exposure to various chemicals found in the environment and in the context of drug development can cause acute toxicity. To provide an alternative to in vivo animal toxicity testing, the U.S. Tox21 consortium developed in vitro assays to test a library of approximately 10,000 drugs and environmental chemicals (Tox21 10 K compound library) in a quantitative high-throughput screening (qHTS) approach. In this study, we assessed the utility of Tox21 assay data in comparison with chemical structure information in predicting acute systemic toxicity. Prediction models were developed using four machine learning algorithms, namely Random Forest, Naïve Bayes, eXtreme Gradient Boosting, and Support Vector Machine, and their performance was assessed using the area under the receiver operating characteristic curve (AUC-ROC). The chemical structure-based models as well as the Tox21 assay data demonstrated good predictive power for acute toxicity, achieving AUC-ROC values ranging from 0.83 to 0.93 and 0.73 to 0.79, respectively. We applied the models to predict the acute toxicity potential of the compounds in the Tox21 10 K compound library, most of which were found to be non-toxic. In addition, we identified the Tox21 assays that contributed the most to acute toxicity prediction, such as acetylcholinesterase (AChE) inhibition and p53 induction. Chemical features including organophosphates and carbamates were also identified to be significantly associated with acute toxicity. In conclusion, this study underscores the utility of in vitro assay data in predicting acute toxicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
比伯的小杨完成签到,获得积分10
刚刚
花雨落123完成签到,获得积分20
刚刚
1秒前
温暖寻雪发布了新的文献求助10
2秒前
皮蛋妹妹发布了新的文献求助10
2秒前
派大星完成签到,获得积分10
4秒前
深情安青应助花雨落123采纳,获得10
5秒前
是草莓发布了新的文献求助10
5秒前
聂落雁完成签到,获得积分10
5秒前
6秒前
7秒前
garatasari完成签到,获得积分10
8秒前
儒雅盼曼完成签到 ,获得积分10
8秒前
11秒前
pcx发布了新的文献求助10
11秒前
IvyLee完成签到,获得积分10
12秒前
儒雅盼曼关注了科研通微信公众号
13秒前
在水一方应助哈哈哈采纳,获得10
13秒前
14秒前
醉酒笑红尘完成签到,获得积分10
14秒前
16秒前
pluto应助淡挞采纳,获得50
17秒前
李明完成签到,获得积分10
17秒前
杰西卡卡给杰西卡卡的求助进行了留言
17秒前
Singularity应助朴素的荠采纳,获得10
17秒前
灵泽发布了新的文献求助30
19秒前
无聊的凉面完成签到,获得积分10
19秒前
22秒前
CyndiaSUN完成签到,获得积分10
23秒前
24秒前
24秒前
Lucas应助1111111采纳,获得10
25秒前
CR7应助木木采纳,获得10
25秒前
匆匆完成签到,获得积分10
25秒前
娜娜完成签到,获得积分10
25秒前
26秒前
孟孟1215发布了新的文献求助10
27秒前
好久不见发布了新的文献求助10
28秒前
斯文败类应助科研通管家采纳,获得30
28秒前
奥特超曼应助科研通管家采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075