Prediction of chemical-induced acute toxicity using in vitro assay data and chemical structure

毒性 急性毒性 背景(考古学) 体内 药理学 体外毒理学 化学 毒理 医学 生物 内科学 生物技术 古生物学
作者
Jia Li,Tuan Xu,Deborah K. Ngan,Menghang Xia,Jinghua Zhao,Srilatha Sakamuru,Anton Simeonov,Ruili Huang
出处
期刊:Toxicology and Applied Pharmacology [Elsevier]
卷期号:492: 117098-117098
标识
DOI:10.1016/j.taap.2024.117098
摘要

Exposure to various chemicals found in the environment and in the context of drug development can cause acute toxicity. To provide an alternative to in vivo animal toxicity testing, the U.S. Tox21 consortium developed in vitro assays to test a library of approximately 10,000 drugs and environmental chemicals (Tox21 10 K compound library) in a quantitative high-throughput screening (qHTS) approach. In this study, we assessed the utility of Tox21 assay data in comparison with chemical structure information in predicting acute systemic toxicity. Prediction models were developed using four machine learning algorithms, namely Random Forest, Naïve Bayes, eXtreme Gradient Boosting, and Support Vector Machine, and their performance was assessed using the area under the receiver operating characteristic curve (AUC-ROC). The chemical structure-based models as well as the Tox21 assay data demonstrated good predictive power for acute toxicity, achieving AUC-ROC values ranging from 0.83 to 0.93 and 0.73 to 0.79, respectively. We applied the models to predict the acute toxicity potential of the compounds in the Tox21 10 K compound library, most of which were found to be non-toxic. In addition, we identified the Tox21 assays that contributed the most to acute toxicity prediction, such as acetylcholinesterase (AChE) inhibition and p53 induction. Chemical features including organophosphates and carbamates were also identified to be significantly associated with acute toxicity. In conclusion, this study underscores the utility of in vitro assay data in predicting acute toxicity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荷珠发布了新的文献求助30
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
Akim应助yan采纳,获得10
2秒前
2秒前
fang完成签到 ,获得积分10
3秒前
浅风发布了新的文献求助10
3秒前
3秒前
英姑应助qiqiqi采纳,获得10
4秒前
4秒前
4秒前
4秒前
CipherSage应助fuchao采纳,获得10
4秒前
5秒前
皮蛋完成签到,获得积分10
5秒前
水草帽完成签到 ,获得积分10
5秒前
5秒前
gwentea完成签到,获得积分10
6秒前
7秒前
8秒前
文献快来完成签到,获得积分10
8秒前
8秒前
9秒前
科研通AI2S应助虤铠采纳,获得30
9秒前
Kirsten发布了新的文献求助10
9秒前
led灯泡发布了新的文献求助10
9秒前
星辰发布了新的文献求助10
9秒前
10秒前
五月好难发布了新的文献求助10
10秒前
EpQAQ完成签到,获得积分10
11秒前
11秒前
神勇难胜完成签到 ,获得积分10
11秒前
邱海华发布了新的文献求助10
11秒前
12秒前
mxr完成签到,获得积分10
12秒前
khh完成签到 ,获得积分10
13秒前
Akim应助vvA11采纳,获得10
13秒前
13秒前
13秒前
蓝天发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901