Prediction of chemical-induced acute toxicity using in vitro assay data and chemical structure

毒性 急性毒性 背景(考古学) 体内 药理学 体外毒理学 化学 毒理 医学 生物 内科学 生物技术 古生物学
作者
Jia Li,Tuan Xu,Deborah K. Ngan,Menghang Xia,Jinghua Zhao,Srilatha Sakamuru,Anton Simeonov,Ruili Huang
出处
期刊:Toxicology and Applied Pharmacology [Elsevier]
卷期号:492: 117098-117098
标识
DOI:10.1016/j.taap.2024.117098
摘要

Exposure to various chemicals found in the environment and in the context of drug development can cause acute toxicity. To provide an alternative to in vivo animal toxicity testing, the U.S. Tox21 consortium developed in vitro assays to test a library of approximately 10,000 drugs and environmental chemicals (Tox21 10 K compound library) in a quantitative high-throughput screening (qHTS) approach. In this study, we assessed the utility of Tox21 assay data in comparison with chemical structure information in predicting acute systemic toxicity. Prediction models were developed using four machine learning algorithms, namely Random Forest, Naïve Bayes, eXtreme Gradient Boosting, and Support Vector Machine, and their performance was assessed using the area under the receiver operating characteristic curve (AUC-ROC). The chemical structure-based models as well as the Tox21 assay data demonstrated good predictive power for acute toxicity, achieving AUC-ROC values ranging from 0.83 to 0.93 and 0.73 to 0.79, respectively. We applied the models to predict the acute toxicity potential of the compounds in the Tox21 10 K compound library, most of which were found to be non-toxic. In addition, we identified the Tox21 assays that contributed the most to acute toxicity prediction, such as acetylcholinesterase (AChE) inhibition and p53 induction. Chemical features including organophosphates and carbamates were also identified to be significantly associated with acute toxicity. In conclusion, this study underscores the utility of in vitro assay data in predicting acute toxicity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DJ关闭了DJ文献求助
1秒前
EKo完成签到,获得积分10
1秒前
灵均完成签到 ,获得积分10
1秒前
1秒前
sun关闭了sun文献求助
2秒前
量子星尘发布了新的文献求助10
2秒前
青松给cha的求助进行了留言
2秒前
科研通AI2S应助山茱萸采纳,获得30
2秒前
3秒前
reform01发布了新的文献求助10
4秒前
4秒前
安静的ky完成签到,获得积分10
4秒前
5秒前
5秒前
xin完成签到,获得积分10
5秒前
dakjdia应助喵喵采纳,获得10
5秒前
6秒前
LuxuryLuo发布了新的文献求助10
6秒前
李爱国应助Percy采纳,获得10
6秒前
6秒前
刘一帆完成签到 ,获得积分10
7秒前
7秒前
史萌发布了新的文献求助10
7秒前
科研通AI6.1应助研友_n0GBAL采纳,获得10
8秒前
8秒前
bkagyin应助赵景豪采纳,获得30
8秒前
桐桐应助liminliminlimin采纳,获得10
8秒前
mofeik发布了新的文献求助10
8秒前
烟花应助郑zz采纳,获得10
8秒前
sxp1031发布了新的文献求助10
9秒前
qingli应助独特的追命采纳,获得40
10秒前
共享精神应助满意的蜗牛采纳,获得10
10秒前
CipherSage应助整齐的冰珍采纳,获得10
10秒前
ztt发布了新的文献求助10
11秒前
lin发布了新的文献求助10
11秒前
楠楠发布了新的文献求助10
11秒前
窗外风雨阑珊完成签到,获得积分10
11秒前
冷水鱼完成签到,获得积分10
11秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751577
求助须知:如何正确求助?哪些是违规求助? 5469081
关于积分的说明 15370428
捐赠科研通 4890701
什么是DOI,文献DOI怎么找? 2629836
邀请新用户注册赠送积分活动 1578067
关于科研通互助平台的介绍 1534214