Prediction of chemical-induced acute toxicity using in vitro assay data and chemical structure

毒性 急性毒性 背景(考古学) 体内 药理学 体外毒理学 化学 毒理 医学 生物 内科学 生物技术 古生物学
作者
Jia Li,Tuan Xu,Deborah K. Ngan,Menghang Xia,Jinghua Zhao,Srilatha Sakamuru,Anton Simeonov,Ruili Huang
出处
期刊:Toxicology and Applied Pharmacology [Elsevier]
卷期号:492: 117098-117098
标识
DOI:10.1016/j.taap.2024.117098
摘要

Exposure to various chemicals found in the environment and in the context of drug development can cause acute toxicity. To provide an alternative to in vivo animal toxicity testing, the U.S. Tox21 consortium developed in vitro assays to test a library of approximately 10,000 drugs and environmental chemicals (Tox21 10 K compound library) in a quantitative high-throughput screening (qHTS) approach. In this study, we assessed the utility of Tox21 assay data in comparison with chemical structure information in predicting acute systemic toxicity. Prediction models were developed using four machine learning algorithms, namely Random Forest, Naïve Bayes, eXtreme Gradient Boosting, and Support Vector Machine, and their performance was assessed using the area under the receiver operating characteristic curve (AUC-ROC). The chemical structure-based models as well as the Tox21 assay data demonstrated good predictive power for acute toxicity, achieving AUC-ROC values ranging from 0.83 to 0.93 and 0.73 to 0.79, respectively. We applied the models to predict the acute toxicity potential of the compounds in the Tox21 10 K compound library, most of which were found to be non-toxic. In addition, we identified the Tox21 assays that contributed the most to acute toxicity prediction, such as acetylcholinesterase (AChE) inhibition and p53 induction. Chemical features including organophosphates and carbamates were also identified to be significantly associated with acute toxicity. In conclusion, this study underscores the utility of in vitro assay data in predicting acute toxicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cly3397完成签到,获得积分10
1秒前
开心发布了新的文献求助10
1秒前
1秒前
少年发布了新的文献求助10
2秒前
天天快乐应助阿毛采纳,获得10
2秒前
Jenny应助狂野的以珊采纳,获得10
2秒前
3秒前
3秒前
4秒前
5秒前
研友_LMNjkn发布了新的文献求助10
5秒前
ding应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
yizhiGao应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
pinging应助科研通管家采纳,获得10
6秒前
唠叨的月光完成签到,获得积分10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
清爽老九应助科研通管家采纳,获得20
6秒前
科研通AI5应助科研通管家采纳,获得20
6秒前
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
清爽老九应助科研通管家采纳,获得20
6秒前
英姑应助科研通管家采纳,获得30
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
优雅苑睐完成签到,获得积分10
7秒前
善学以致用应助CD采纳,获得10
7秒前
无花果应助孙奕采纳,获得10
8秒前
8秒前
HYH发布了新的文献求助20
8秒前
Rinohalt发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794