Prediction of chemical-induced acute toxicity using in vitro assay data and chemical structure

毒性 急性毒性 背景(考古学) 体内 药理学 体外毒理学 化学 毒理 医学 生物 内科学 生物技术 古生物学
作者
Jia Li,Tuan Xu,Deborah K. Ngan,Menghang Xia,Jinghua Zhao,Srilatha Sakamuru,Anton Simeonov,Ruili Huang
出处
期刊:Toxicology and Applied Pharmacology [Elsevier]
卷期号:492: 117098-117098
标识
DOI:10.1016/j.taap.2024.117098
摘要

Exposure to various chemicals found in the environment and in the context of drug development can cause acute toxicity. To provide an alternative to in vivo animal toxicity testing, the U.S. Tox21 consortium developed in vitro assays to test a library of approximately 10,000 drugs and environmental chemicals (Tox21 10 K compound library) in a quantitative high-throughput screening (qHTS) approach. In this study, we assessed the utility of Tox21 assay data in comparison with chemical structure information in predicting acute systemic toxicity. Prediction models were developed using four machine learning algorithms, namely Random Forest, Naïve Bayes, eXtreme Gradient Boosting, and Support Vector Machine, and their performance was assessed using the area under the receiver operating characteristic curve (AUC-ROC). The chemical structure-based models as well as the Tox21 assay data demonstrated good predictive power for acute toxicity, achieving AUC-ROC values ranging from 0.83 to 0.93 and 0.73 to 0.79, respectively. We applied the models to predict the acute toxicity potential of the compounds in the Tox21 10 K compound library, most of which were found to be non-toxic. In addition, we identified the Tox21 assays that contributed the most to acute toxicity prediction, such as acetylcholinesterase (AChE) inhibition and p53 induction. Chemical features including organophosphates and carbamates were also identified to be significantly associated with acute toxicity. In conclusion, this study underscores the utility of in vitro assay data in predicting acute toxicity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
memory完成签到,获得积分10
1秒前
韩小小发布了新的文献求助10
1秒前
活泼天晴应助liam采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
FashionBoy应助咯咚采纳,获得10
2秒前
生动电脑完成签到,获得积分10
4秒前
4秒前
三水番完成签到,获得积分10
5秒前
简单糜完成签到,获得积分10
6秒前
在水一方应助111采纳,获得10
6秒前
一笑生花完成签到,获得积分10
7秒前
7秒前
8秒前
科目三应助VickyS采纳,获得10
9秒前
112233发布了新的文献求助10
9秒前
不良帅完成签到,获得积分10
10秒前
NexusExplorer应助KX2024采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
汉堡包应助支凤妖采纳,获得10
12秒前
爆米花应助风趣的慕灵采纳,获得10
12秒前
十一发布了新的文献求助20
13秒前
彭冬华完成签到,获得积分10
13秒前
FashionBoy应助三鲜汤采纳,获得10
13秒前
深情安青应助sijietan采纳,获得10
14秒前
even完成签到,获得积分10
15秒前
SciGPT应助故意的鸿涛采纳,获得10
15秒前
15秒前
Akim应助orange采纳,获得10
16秒前
wwwwwwjh完成签到,获得积分10
16秒前
念念完成签到,获得积分10
17秒前
17秒前
小匀匀21完成签到,获得积分10
17秒前
sherrywuxh完成签到,获得积分10
18秒前
フー・ヘイ・ホイ完成签到,获得积分10
18秒前
LLL发布了新的文献求助10
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
wanci应助better采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729500
求助须知:如何正确求助?哪些是违规求助? 5318746
关于积分的说明 15316776
捐赠科研通 4876514
什么是DOI,文献DOI怎么找? 2619398
邀请新用户注册赠送积分活动 1568923
关于科研通互助平台的介绍 1525513