Prediction of chemical-induced acute toxicity using in vitro assay data and chemical structure

毒性 急性毒性 背景(考古学) 体内 药理学 体外毒理学 化学 毒理 医学 生物 内科学 生物技术 古生物学
作者
Jia Li,Tuan Xu,Deborah K. Ngan,Menghang Xia,Jinghua Zhao,Srilatha Sakamuru,Anton Simeonov,Ruili Huang
出处
期刊:Toxicology and Applied Pharmacology [Elsevier]
卷期号:492: 117098-117098
标识
DOI:10.1016/j.taap.2024.117098
摘要

Exposure to various chemicals found in the environment and in the context of drug development can cause acute toxicity. To provide an alternative to in vivo animal toxicity testing, the U.S. Tox21 consortium developed in vitro assays to test a library of approximately 10,000 drugs and environmental chemicals (Tox21 10 K compound library) in a quantitative high-throughput screening (qHTS) approach. In this study, we assessed the utility of Tox21 assay data in comparison with chemical structure information in predicting acute systemic toxicity. Prediction models were developed using four machine learning algorithms, namely Random Forest, Naïve Bayes, eXtreme Gradient Boosting, and Support Vector Machine, and their performance was assessed using the area under the receiver operating characteristic curve (AUC-ROC). The chemical structure-based models as well as the Tox21 assay data demonstrated good predictive power for acute toxicity, achieving AUC-ROC values ranging from 0.83 to 0.93 and 0.73 to 0.79, respectively. We applied the models to predict the acute toxicity potential of the compounds in the Tox21 10 K compound library, most of which were found to be non-toxic. In addition, we identified the Tox21 assays that contributed the most to acute toxicity prediction, such as acetylcholinesterase (AChE) inhibition and p53 induction. Chemical features including organophosphates and carbamates were also identified to be significantly associated with acute toxicity. In conclusion, this study underscores the utility of in vitro assay data in predicting acute toxicity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助yaoyinlin采纳,获得10
1秒前
小何发布了新的文献求助10
1秒前
DDD发布了新的文献求助10
2秒前
轻风发布了新的文献求助10
2秒前
3秒前
派123发布了新的文献求助10
4秒前
4秒前
4秒前
正直尔曼完成签到,获得积分10
5秒前
Criminology34给Criminology34的求助进行了留言
6秒前
6秒前
ZXC发布了新的文献求助10
6秒前
彧辰完成签到 ,获得积分10
7秒前
8秒前
行僧发布了新的文献求助10
8秒前
Owen应助唐皮皮采纳,获得10
8秒前
明亮的冷雪完成签到,获得积分10
9秒前
勤奋一一应助111采纳,获得10
10秒前
Akim应助luckily采纳,获得10
10秒前
11秒前
英俊的铭应助喜新厌旧采纳,获得10
11秒前
我是老大应助juzi采纳,获得20
11秒前
量子星尘发布了新的文献求助10
11秒前
刘大可完成签到,获得积分10
11秒前
12秒前
扶光完成签到,获得积分10
14秒前
胡蝶发布了新的文献求助10
14秒前
清江鱼完成签到,获得积分10
15秒前
15秒前
温暖天与应助zero采纳,获得10
16秒前
行僧完成签到,获得积分10
16秒前
17秒前
17秒前
zoe发布了新的文献求助10
18秒前
爆米花应助22采纳,获得10
19秒前
杨文彬发布了新的文献求助10
19秒前
19秒前
MQ完成签到 ,获得积分10
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684580
求助须知:如何正确求助?哪些是违规求助? 5037579
关于积分的说明 15184614
捐赠科研通 4843828
什么是DOI,文献DOI怎么找? 2596943
邀请新用户注册赠送积分活动 1549548
关于科研通互助平台的介绍 1508057