亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Color Vision Deficiency Recognition Based on Eye-Tracking Metrics Using Machine Learning Approaches

人工智能 计算机科学 计算机视觉 眼动 跟踪(教育) 模式识别(心理学) 机器学习 心理学 教育学
作者
Olga Vl. Bitkina,Jaehyun Park,Do-Hyeon Ryu
出处
期刊:International Journal of Human-computer Interaction [Informa]
卷期号:: 1-15
标识
DOI:10.1080/10447318.2024.2415764
摘要

Individuals with color vision deficiency (CVD) face many difficulties and limitations in their daily lives and professional activities, some of which may prove life-threatening. These negative factors necessitate the development of methods for the identification and classification of CVD. Because CVD is a vision impairment, it is crucial to determine if its presence can be predicted with eye behavior. An experiment was conducted using a driving simulator and eye-tracking glasses. The experiment included 27 people with CVD (12 with deuteranopia, 9 with deuteranomaly, 3 with protanopia, and 3 with protanomaly) and 10 people with normal color vision. Each participant performed multiple driving attempts with color-coded guidelines on the navigator to assess visual search ability. Based on data recorded by an eye tracker, the following three types of cross-validated models were developed: binary classification (presence and absence of CVD), a three-class model to recognize the absence of CVD, protanopia, and deuteranopia, and a five-class model to predict the absence of CVD, deuteranopia, deuteranomaly, protanopia, and protanomaly. These three models yielded respective accuracy levels of over 95%, 66%–78%, and 43%–52%. Overall, it was found that eye-tracking metrics have the potential to classify and predict CVD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
科研通AI2S应助Zy采纳,获得10
24秒前
46秒前
洛克发布了新的文献求助10
50秒前
real完成签到,获得积分10
51秒前
竹筏过海应助有人采纳,获得30
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
cqbrain123完成签到,获得积分10
1分钟前
月光入梦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
龍一发布了新的文献求助20
2分钟前
请叫我风吹麦浪应助有人采纳,获得10
2分钟前
2分钟前
33完成签到,获得积分0
2分钟前
asdfqaz完成签到,获得积分10
2分钟前
科研通AI2S应助丰富寒风采纳,获得10
2分钟前
2分钟前
归尘发布了新的文献求助10
3分钟前
3分钟前
丰富寒风发布了新的文献求助10
3分钟前
酷炫的尔丝完成签到 ,获得积分10
3分钟前
duanhuiyuan应助有人采纳,获得10
3分钟前
丰富寒风完成签到,获得积分20
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
奔跑的蒲公英完成签到,获得积分10
3分钟前
3分钟前
藤椒辣鱼应助科研通管家采纳,获得10
3分钟前
藤椒辣鱼应助科研通管家采纳,获得10
3分钟前
藤椒辣鱼应助科研通管家采纳,获得10
3分钟前
藤椒辣鱼应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
机智迎天完成签到 ,获得积分10
4分钟前
HS完成签到,获得积分10
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466817
求助须知:如何正确求助?哪些是违规求助? 3059596
关于积分的说明 9067206
捐赠科研通 2750080
什么是DOI,文献DOI怎么找? 1508953
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896