活性氧
活力测定
多囊卵巢
丙二醛
内分泌学
脱氢表雄酮
内科学
化学
下调和上调
细胞凋亡
男科
生物
氧化应激
雄激素
医学
细胞生物学
胰岛素抵抗
激素
生物化学
糖尿病
基因
作者
Hongyu Yang,Shichao Chen,Shanshan Yin,Qi Ding
摘要
Abstract Polycystic ovary syndrome (PCOS) is a common endocrine disorder that can cause menstrual irregularities, infertility, polycystic ovaries, and metabolic abnormalities. Female reproductive health and quality of life are significantly affected by PCOS, which has recently been associated with ferroptosis in granulosa cells (GCs). Nuciferine (NF) is a naturally extracted substance with multiple pharmacological activities, which is reported with anti‐ferroptosis function. Herein, the influence of NF for androgen‐induced ferroptosis in GCs was investigated to explore the potential value of NF on treating PCOS. 10 μM NF and 20 μM NF were employed for treating KGN cells according to cell viability results. KGN cells were treated with 10 μM dehydroepiandrosterone (DHEA) for 1 day, followed by introducing 10 μM NF and 20 μM NF for 24 h. Strikingly reduced cell viability, increased lactate dehydrogenase release and reactive oxygen species (ROS) production, enhanced apoptosis, upregulated Bax, downregulated Bcl‐2, restrained malondialdehyde contents, and declined superoxide dismutase activity were observed in DHEA‐treated KGN cells, which were significantly reversed by NF. Significantly repressed GPX4, SLC7A11, and SOX2 levels, as well as increased ACSL4 levels and Fe 2+ levels in DHEA‐treated KGN cells, were notably rescued by NF. Furthermore, the inhibitory effect of NF on ROS production and ferroptosis in DHEA‐treated KGN cells was partially abrogated by silencing SOX2. Collectively, NF protected DHEA‐injured ovarian GCs by inhibiting ferroptosis via upregulating SOX2.
科研通智能强力驱动
Strongly Powered by AbleSci AI