Physics-constrained deep learning for biophysical parameter retrieval from Sentinel-2 images: Inversion of the PROSAIL model

遥感 叶面积指数 反演(地质) 计算机科学 辐射传输 大气辐射传输码 背景(考古学) 环境科学 人工神经网络 人工智能 地理 地质学 生态学 古生物学 物理 考古 构造盆地 量子力学 生物
作者
Yoël Zérah,Silvia Valero,Jordi Inglada
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:312: 114309-114309 被引量:1
标识
DOI:10.1016/j.rse.2024.114309
摘要

In this era of global warming, the regular and accurate mapping of vegetation conditions is essential for monitoring ecosystems, climate sustainability and biodiversity. In this context, this work proposes a physics-guided data-driven methodology to invert radiative transfer models (RTM) for the retrieval of vegetation biophysical variables. A hybrid paradigm is proposed by incorporating the physical model to be inverted into the design of a neural network architecture, which is trained by exploiting unlabeled satellite images. In this study, we show how the proposed strategy allows the simultaneous probabilistic inversion of all input PROSAIL model parameters by exploiting Sentinel-2 images. The interest of the proposed self-supervised learning strategy is corroborated by showing the limitations of existing simulation-trained machine learning algorithms. Results are assessed on leaf area index (LAI) and canopy chlorophyll content (CCC) in-situ measurements collected on four different field campaigns over three European tests sites. Prediction accuracies are compared with performances reached by the well-established Biophysical Processor (BP) of the Sentinel Application Platform (SNAP). Obtained overall accuracies corroborate that the proposed methodology achieves performances equivalent to or better than the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cmt完成签到,获得积分10
刚刚
1秒前
1秒前
miaomiao发布了新的文献求助10
1秒前
1秒前
田様应助虚幻忆南采纳,获得10
2秒前
索多倍完成签到 ,获得积分10
2秒前
期望应助加菲丰丰采纳,获得20
2秒前
2秒前
3秒前
李爱国应助宁学者采纳,获得10
3秒前
小二郎应助机枪人采纳,获得10
3秒前
3秒前
4秒前
穿书之成为科研大佬完成签到,获得积分10
4秒前
5秒前
5秒前
友好醉波完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
Marvel发布了新的文献求助10
6秒前
yan发布了新的文献求助20
6秒前
kiwibeta完成签到,获得积分10
6秒前
xj发布了新的文献求助10
6秒前
小二郎应助Tuo采纳,获得10
7秒前
王爱灿完成签到,获得积分10
7秒前
7秒前
SlimJoker发布了新的文献求助10
7秒前
xxxx发布了新的文献求助10
8秒前
小马完成签到,获得积分10
8秒前
8秒前
ddd完成签到,获得积分10
9秒前
9秒前
qiu发布了新的文献求助10
10秒前
友好醉波发布了新的文献求助10
10秒前
125发布了新的文献求助10
10秒前
酷波er应助陈嘻嘻嘻嘻采纳,获得10
11秒前
嘟嘟嘟发布了新的文献求助10
11秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305763
求助须知:如何正确求助?哪些是违规求助? 2939395
关于积分的说明 8493534
捐赠科研通 2613845
什么是DOI,文献DOI怎么找? 1427668
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647945