COVID-19 Dynamics and Mutation: Linking Intra-Host and Inter-Hosts Dynamics Via Agent-Based Modeling Approach

动力学(音乐) 寄主(生物学) 2019年冠状病毒病(COVID-19) 突变 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019-20冠状病毒爆发 生物 病毒学 遗传学 物理 医学 传染病(医学专业) 爆发 病理 疾病 基因 声学
作者
Matthew O. Adewole,Newton I. Okposo,Farah Aini Abdullah,Majid Khan Majahar Ali
出处
期刊:International Journal of Biomathematics [World Scientific]
标识
DOI:10.1142/s1793524524500955
摘要

The study addresses the global impact of COVID-19 by developing a mathematical model that combines within-host and between-host factors to better understand the disease’s dynamics. It begins by describing SARS-CoV-2 dynamics within individual human hosts using fractional-order differential equations. The model is shown to be Ulam–Hyers stable, ensuring reliable predictions. The research then investigates virus transmission from infected to susceptible individuals using agent-based modeling (ABM). This approach allows us to capture the diversity and heterogeneity among individuals, including variations in internal state of individuals, immune response and responses to interventions, making the model more realistic compared to aggregate models. The agent-based model places individuals on a square lattice, assigns health states (susceptible, infectious, or recovered), and relies on infected individuals’ viral load for transmission. Parameter values are stochastically generated via Latin hypercube sampling. The study further explores the impact of viral mutation and control measures. Simulations demonstrate that vaccination substantially reduces transmission but may not eliminate it entirely. The strategy is more effective when vaccinated individuals are evenly distributed across the population, as opposed to concentrated on one side. The research further reveals that while reducing transmission probability decreases infections by implementing prevention protocols, it does not proportionally correlate with the reduction magnitude. This discrepancy is attributed to the intervention primarily addressing inter-host transmission dynamics without directly influencing intra-host viral dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
提手旁辰完成签到,获得积分20
刚刚
能干的邹完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
酒九完成签到,获得积分10
1秒前
刺槐完成签到,获得积分10
1秒前
Owen应助LLKK采纳,获得30
3秒前
3秒前
3秒前
4秒前
苏鱼完成签到 ,获得积分10
4秒前
恋空完成签到 ,获得积分10
4秒前
曲终人散完成签到,获得积分10
5秒前
wu发布了新的文献求助10
5秒前
wintercyan完成签到,获得积分10
5秒前
7秒前
7秒前
妮儿发布了新的文献求助10
7秒前
7秒前
MADKAI发布了新的文献求助10
8秒前
insane完成签到,获得积分10
8秒前
云儿发布了新的文献求助20
8秒前
Jasper应助哲999采纳,获得10
8秒前
wanci应助拟拟采纳,获得10
9秒前
王超超完成签到,获得积分10
9秒前
9秒前
圈圈发布了新的文献求助10
10秒前
狼来了aas完成签到,获得积分10
10秒前
10秒前
大胆的莛发布了新的文献求助10
11秒前
文静的信封完成签到,获得积分10
11秒前
CipherSage应助wu采纳,获得10
11秒前
科目三应助震666采纳,获得30
11秒前
April发布了新的文献求助10
12秒前
加菲丰丰应助猫橘汽水采纳,获得30
12秒前
阳光海云完成签到,获得积分10
12秒前
13秒前
攒一口袋星星完成签到,获得积分10
13秒前
alwry完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740