Exploring artificial intelligence (AI) chatbots adoption among research scholars using unified theory of acceptance and use of technology (UTAUT)

技术接受与使用的统一理论 计算机科学 知识管理 心理学 数据科学 期望理论 人工智能 社会心理学
作者
Guanhua Chen,Jiamei Fan,Mehreen Azam
出处
期刊:Journal of Librarianship and Information Science [SAGE]
标识
DOI:10.1177/09610006241269189
摘要

The use of artificial intelligence (AI) tools, such as chatbots, has significantly increased in academia and research. The present study seeks to determine the key factors influencing chatbot adoption, as well as attempts to validate the unified theory of acceptance and use of technology (UTAUT) in the context of AI chatbots adoption among research scholars. The data for this study were collected through purposive sampling using a cross-sectional survey. The population of the study comprised research scholars enrolled in three public sector universities in Pakistan. The eight-factor proposed measurement model was estimated using confirmatory factor analysis (CFA) based on 30 valid items. The goodness of fit indices suggest a favourable fit for the model χ 2 = 1.710, DF = 381; p = 0.000; IFI = .902; TLI = 0.886, CFI = 0.900, RMSEA = 0.056. Our research affirms that social influence, trust, and facilitating conditions play pivotal roles as primary predictors of behavioural intentions for AI chatbots adoption among scholars. The study suggests that the perceived risks associated with using AI chatbots due to their potential misuse can be minimized by effectively implementing AI user guidelines, and developing AI literacy among scholars. Information professionals and ethical libraries can play an important role in “building the bridge” between cutting-edge technology capabilities and information users’ needs and rights. The proposed eight-factor AI chatbots adoption model holds substantial potential in understanding the influence of performance expectancy, effort expectancy, social influence, trust, perceived risk, and facilitating conditions on behavioural intention to AI chatbots adoption. This study contributes to the limited body of research investigating the factors influencing AI chatbot adoption among research scholars using the UTAUT model with additional constructs for trust and perceived risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hyw完成签到,获得积分10
1秒前
李爱国应助曾丹采纳,获得10
1秒前
fsfyy发布了新的文献求助10
1秒前
混沌发布了新的文献求助10
1秒前
ZHOUJING完成签到,获得积分10
1秒前
2秒前
3秒前
简单的小鸽子应助柿柿采纳,获得10
3秒前
你好发布了新的文献求助10
3秒前
汪小珍发布了新的文献求助10
4秒前
怡and诺发布了新的文献求助10
5秒前
5秒前
5秒前
852应助Tonald Yang采纳,获得10
6秒前
麦苗果果发布了新的文献求助10
7秒前
xiaocoub发布了新的文献求助10
7秒前
星辰大海应助haitianluna采纳,获得20
7秒前
敏静发布了新的文献求助10
9秒前
susu完成签到,获得积分10
11秒前
AbA发布了新的文献求助10
11秒前
11秒前
汪小珍完成签到,获得积分10
12秒前
13秒前
haitianluna完成签到,获得积分20
13秒前
zhaoning123完成签到,获得积分20
13秒前
柳叶完成签到,获得积分10
14秒前
15秒前
18秒前
桐伶完成签到,获得积分10
19秒前
蕊蕊发布了新的文献求助10
19秒前
丘比特应助AbA采纳,获得10
19秒前
19秒前
20秒前
zhaoning123发布了新的文献求助10
21秒前
田様应助冷傲麦片采纳,获得10
21秒前
在水一方应助俏皮的豌豆采纳,获得10
24秒前
Yuna96发布了新的文献求助10
24秒前
HTing发布了新的文献求助10
24秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124525
求助须知:如何正确求助?哪些是违规求助? 2774840
关于积分的说明 7724243
捐赠科研通 2430307
什么是DOI,文献DOI怎么找? 1291019
科研通“疑难数据库(出版商)”最低求助积分说明 622052
版权声明 600297