已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Crowdless Future? Generative AI and Creative Problem-Solving

生成语法 众包 创造性地解决问题 人类智力 新颖性 计算机科学 质量(理念) 管理科学 认识论 知识管理 创造力 人工智能 心理学 经济 社会心理学 哲学 万维网
作者
Léonard Boussioux,Jacqueline N. Lane,Miaomiao Zhang,Vladimir Jaćimović,Karim R. Lakhani
出处
期刊:Organization Science [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/orsc.2023.18430
摘要

The rapid advances in generative artificial intelligence (AI) open up attractive opportunities for creative problem-solving through human-guided AI partnerships. To explore this potential, we initiated a crowdsourcing challenge focused on sustainable, circular economy business ideas generated by the human crowd (HC) and collaborative human-AI efforts using two alternative forms of solution search. The challenge attracted 125 global solvers from various industries, and we used strategic prompt engineering to generate the human-AI solutions. We recruited 300 external human evaluators to judge a randomized selection of 13 out of 234 solutions, totaling 3,900 evaluator-solution pairs. Our results indicate that while human crowd solutions exhibited higher novelty—both on average and for highly novel outcomes—human-AI solutions demonstrated superior strategic viability, financial and environmental value, and overall quality. Notably, human-AI solutions cocreated through differentiated search, where human-guided prompts instructed the large language model to sequentially generate outputs distinct from previous iterations, outperformed solutions generated through independent search. By incorporating “AI in the loop” into human-centered creative problem-solving, our study demonstrates a scalable, cost-effective approach to augment the early innovation phases and lays the groundwork for investigating how integrating human-AI solution search processes can drive more impactful innovations. Funding: This work was supported by Harvard Business School (Division of Research and Faculty Development) and the Laboratory for Innovation Science at Harvard (LISH) at the Digital Data and Design (D 3 ) Institute at Harvard. Supplemental Material: The online appendix is available at https://doi.org/10.1287/orsc.2023.18430 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
正直幻香发布了新的文献求助10
4秒前
一颗红葡萄完成签到 ,获得积分10
5秒前
5秒前
英俊的铭应助稳定上分采纳,获得10
6秒前
成就仇天完成签到 ,获得积分10
6秒前
7秒前
共享精神应助榕榕榕采纳,获得10
8秒前
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
拼搏的宇完成签到 ,获得积分10
9秒前
11秒前
11秒前
oceanao应助小晚采纳,获得10
11秒前
朴素从安完成签到,获得积分10
11秒前
情怀应助PrettyZeri采纳,获得10
13秒前
科研菜鸟发布了新的文献求助10
15秒前
难摧发布了新的文献求助10
16秒前
16秒前
榕榕榕发布了新的文献求助10
20秒前
21秒前
CipherSage应助未命名采纳,获得10
21秒前
葛根发布了新的文献求助10
22秒前
23秒前
Jack发布了新的文献求助30
24秒前
25秒前
Dr_Zhen发布了新的文献求助10
25秒前
研友_LBrm9L给研友_LBrm9L的求助进行了留言
26秒前
27秒前
27秒前
榕榕榕完成签到,获得积分10
30秒前
31秒前
李爱国应助乐乐乐乐乐乐采纳,获得10
31秒前
Solomon完成签到 ,获得积分0
31秒前
英姑应助larva采纳,获得10
31秒前
33秒前
34秒前
35秒前
35秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158328
求助须知:如何正确求助?哪些是违规求助? 2809625
关于积分的说明 7882717
捐赠科研通 2468154
什么是DOI,文献DOI怎么找? 1313920
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601956