Probabilistic Path Planning for UAVs in Forest Fire Monitoring: Enhancing Patrol Efficiency through Risk Assessment

概率逻辑 计算机科学 路径(计算) 点(几何) 运动规划 消防 运筹学 工程类 人工智能 地理 地图学 数学 机器人 程序设计语言 几何学
作者
Yuqin Wang,Fengsen Gao,Minghui Li
出处
期刊:Fire [MDPI AG]
卷期号:7 (7): 254-254
标识
DOI:10.3390/fire7070254
摘要

Forest fire is a significant global natural disaster, and unmanned aerial vehicles (UAVs) have gained attention in wildfire prevention for their efficient and flexible monitoring capabilities. Proper UAV patrol path planning can enhance fire-monitoring accuracy and response speed. This paper proposes a probabilistic path planning (PPP) module that plans UAV patrol paths by combining real-time fire occurrence probabilities at different points. Initially, a forest fire risk logistic regression model is established to compute the fire probabilities at different patrol points. Subsequently, a patrol point filter is applied to remove points with low fire probabilities. Finally, combining fire probabilities with distances between patrol points, a dynamic programming (DP) algorithm is employed to generate an optimal UAV patrol route. Compared with conventional approaches, the experimental results demonstrate that the PPP module effectively improves the timeliness of fire monitoring and containment, and the introduction of DP, considering that the fire probabilities and the patrol point filter both contribute positively to the experimental outcomes. Different combinations of patrol point coordinates and their fire probabilities are further studied to summarize the applicability of this method, contributing to UAV applications in forest fire monitoring and prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yvonne发布了新的文献求助10
1秒前
NANA发布了新的文献求助10
1秒前
yoyocici1505完成签到,获得积分10
1秒前
ding应助平常的擎宇采纳,获得30
2秒前
於松应助Chang采纳,获得20
2秒前
刻苦问柳完成签到,获得积分10
2秒前
呆萌小鸭子完成签到 ,获得积分10
2秒前
白白完成签到,获得积分10
2秒前
Lxy完成签到,获得积分10
2秒前
3秒前
橙子味完成签到 ,获得积分10
3秒前
4秒前
4秒前
dong完成签到,获得积分10
4秒前
5秒前
科研通AI5应助刘芸芸采纳,获得10
6秒前
baijiayi完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
song发布了新的文献求助10
7秒前
LEMON发布了新的文献求助10
8秒前
8秒前
Aha完成签到 ,获得积分10
8秒前
8秒前
乐乐应助狂野世立采纳,获得10
9秒前
yzz完成签到,获得积分10
9秒前
9秒前
SYLH应助曾水采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
陈佳琪发布了新的文献求助30
10秒前
思源应助科研通管家采纳,获得10
10秒前
10秒前
pluto应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762