巨噬细胞移动抑制因子
炎症
促炎细胞因子
分泌物
肿瘤坏死因子α
生物
免疫学
单核细胞
巨噬细胞
微生物学
细胞培养
细胞因子
体外
生物化学
遗传学
作者
Swagata Ghosh,AH Humera Khathun,G.S. Athulya,Pandiarajan Vignesh,L Mathan,Ninad Mudaraddi,Siddharth Narendran,Prajna Lalitha,N. Venkatesh Prajna
标识
DOI:10.1016/j.exer.2023.109669
摘要
Therapeutic management of inflammation in infectious keratitis (IK) requires new strategy and targets for selective immunomodulation. Targeting host cell-type specific inflammatory responses might be a viable strategy to curtail unnecessary inflammation and reduce tissue damage without affecting pathogen clearance. This study explores the possibility of pathogen and host cell-type dependent differences in the inflammatory pathways relevant in the pathogenesis of IK. Human corneal epithelial cell line (HCEC) and phorbol 12-myristate-13 acetate (PMA) differentiated THP-1 macrophage line were infected with either Aspergillus flavus conidia or Acanthamoeba castellanii trophozoites and the elicited inflammatory responses were studied in terms of gene expression and secretion of proinflammatory factors interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) and an upstream inflammatory regulator and mediator protein-the Macrophage Migration Inhibitory Factor (MIF). Given the pleotropic mode of MIF function in diverse cell types relevant in many human diseases, we tested if MIF driven responses to infection is different in HCECs and THP-1 macrophages by studying its expression, secretion and involvement in inflammation by siRNA mediated knockdown. We also examined IK patient tear samples for MIF levels. Infection with A. flavus or A. castellanii induced IL-8 and TNF-α responses in HCECs and THP-1 macrophages but to different levels. Our preliminary human data showed that the level of secreted MIF protein was elevated in IK patient tear, however, MIF secretion by the two cell types were strikingly different in-vitro, under both normal and infected conditions. We found that HCECs released MIF constitutively, which was significantly inhibited with infection, whereas THP-1 macrophages were stimulated to release MIF during infection. MIF gene expression remained largely unaffected by infection in both the cell lines. Although MIF in HCECs appeared to be intracellularly captured during infection, MIF knockdown in HCECs associated with a partial reduction of the IL-8 and TNF-α expression produced by either of the pathogens, suggesting a pro-inflammatory role for MIF in HCECs, independent of its canonical cytokine like function. In contrast, MIF knockdown in THP-1 macrophages accompanied a dramatic increase in IL-8 and TNF-α expression during A. castellanii infection, while the responses to A. flavus infection remained unchanged. These data imply a host cell-type and pathogen specific distinction in the MIF- related inflammatory signaling and MIF as a potential selective immunomodulatory target in infectious keratitis.
科研通智能强力驱动
Strongly Powered by AbleSci AI