期刊:Energy & Fuels [American Chemical Society] 日期:2023-08-08卷期号:37 (23): 17892-17914被引量:5
标识
DOI:10.1021/acs.energyfuels.3c01626
摘要
To surmount constraints, the increasing demand for electric vehicles and networks necessitates the use of lithium-ion batteries (LIBs) that traditionally use electrolytes that are volatile organic liquids (LEs). Increasing demand for electric networks and automobiles necessitates safer batteries in the presence of more energy. Lithium solid-state batteries (SSBs) have recently gained popularity as alternatives to LEs. However, the interface instability between solid electrolytes (SEs) and electrodes limits the energy density of SSBs. With parasitic reactions and dendrite growth, this culminates in a short cycle life and a dissatisfied coulombic efficiency. Significant advancements have been made in the field of SEs. Nevertheless, substantial challenges still exist that prevent the practical use of SSBs with high energy densities. This review summarizes the most current findings in the study of electrolytes. Basic comprehension of the mechanism, scientific obstacles, and solutions to electrolyte limitations for high-performance SSBs are covered. Numerous strategies for addressing interface issues are analyzed, and as a result, some recommendations are made regarding the optimal electrolyte characteristics for practical applications. At the end of this review, key concerns and proposals for future study into how best to develop high-performance lithium SSBs are discussed.