亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Base on contextual phrases with cross-correlation attention for aspect-level sentiment analysis

计算机科学 情绪分析 人工智能 自然语言处理 短语 判决 杠杆(统计) 条件随机场 背景(考古学) 机器学习 生物 古生物学
作者
Chao Zhu,Benshun Yi,Laigan Luo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:241: 122683-122683 被引量:6
标识
DOI:10.1016/j.eswa.2023.122683
摘要

In recent years, sentiment analysis has emerged as a prominent area of research within the field of natural language processing. Particularly, aspect-level sentiment classification has gained significant attention for its focus on discerning and analyzing sentiment expressed towards specific aspects within sentences. Existing methods primarily rely on extracting keywords from sentence contexts to determine sentiment polarity, yielding satisfactory results. However, a notable limitation of these approaches is their inability to consider the crucial information contained within key phrases in sentences, which plays a vital role in sentiment analysis.To address this limitation, we propose a novel deformable convolutional network model designed to leverage the power of phrases for aspect-level sentiment analysis. By utilizing deformable convolutions with adaptive receptive fields, our model effectively extracts phrase representations at various contextual distances. Furthermore, a cross-correlation attention mechanism is incorporated to capture interdependencies between phrases and words in the context. To evaluate the effectiveness of our approach, we conduct comprehensive evaluations across widely used datasets, demonstrating the promising performance of our model in enhancing sentiment classification tasks. Our model outperforms the model based on CNN, which also leverages phrase extraction, by improving accuracy by 1.71%, 2.5%, and 1.89%, respectively, on the Laptop, Restaurant, and Twitter datasets. Additionally, it surpasses the performance of the latest models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
伶俐鸿发布了新的文献求助10
10秒前
模糊中正应助风华正茂采纳,获得10
29秒前
36秒前
Jasper应助伶俐鸿采纳,获得10
40秒前
42秒前
土豪的灵竹完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
义气的书雁完成签到,获得积分10
2分钟前
2分钟前
leekacle完成签到,获得积分10
2分钟前
Owen应助不秃不秃肝起来采纳,获得10
2分钟前
Panther完成签到,获得积分10
2分钟前
3分钟前
郭二发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助郭二采纳,获得10
3分钟前
赘婿应助zhangjiyuan采纳,获得10
3分钟前
leekacle发布了新的文献求助10
3分钟前
小武wwwww完成签到 ,获得积分10
3分钟前
3分钟前
ding应助一一一采纳,获得30
3分钟前
3分钟前
一一一发布了新的文献求助30
3分钟前
谷粱安卉完成签到 ,获得积分10
4分钟前
4分钟前
充电宝应助郭二采纳,获得10
4分钟前
zhangjiyuan发布了新的文献求助10
4分钟前
乐乐应助一一一采纳,获得10
4分钟前
在水一方应助小天使海蒂采纳,获得10
4分钟前
zhangjiyuan完成签到,获得积分20
4分钟前
4分钟前
4分钟前
一一一发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
李健应助蓝色的多崎作采纳,获得10
5分钟前
5分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3381303
求助须知:如何正确求助?哪些是违规求助? 2996201
关于积分的说明 8767773
捐赠科研通 2681438
什么是DOI,文献DOI怎么找? 1468532
科研通“疑难数据库(出版商)”最低求助积分说明 679009
邀请新用户注册赠送积分活动 671111