MFIR: Multimodal fusion and inconsistency reasoning for explainable fake news detection

计算机科学 模态(人机交互) 语义学(计算机科学) 可解释性 模式 串联(数学) 特征(语言学) 人工智能 自然语言处理 情态动词 情报检索 语言学 哲学 社会学 组合数学 化学 高分子化学 程序设计语言 社会科学 数学
作者
Lianwei Wu,Yuzhou Long,Chao Gao,Zhen Wang,Yanning Zhang
出处
期刊:Information Fusion [Elsevier]
卷期号:100: 101944-101944 被引量:14
标识
DOI:10.1016/j.inffus.2023.101944
摘要

Fake news possesses a destructive and negative impact on our lives. With the rapid growth of multimodal content in social media communities, multimodal fake news detection has received increasing attention. Most existing approaches focus on learning the respective deep semantics of various modalities and integrating them by traditional fusion modes (like concatenation or addition, etc.) for improving detection performance, which has achieved a certain degree of success. However, they have two crucial issues: (1) Shallow cross-modal feature fusion, and (2) Difficulty in capturing inconsistent information. To this end, we propose Multimodal Fusion and Inconsistency Reasoning (MFIR) model to discover multimodal inconsistent semantics for explainable fake news detection. Specifically, MFIR consists of three modules: (1) Different from the traditional fusion modes, cross-modal infiltration fusion is designed, which is absorbed in continuously infiltrating and correlating another modality features into its internal semantics based on the current modality, which can well ensure the retention of the contextual semantics of the original modality; (2) Multimodal inconsistent learning not only captures the local inconsistent semantics from the perspectives of text and vision, but also integrates the two types of local semantics to discover global inconsistent semantics in multimodal content; (3) To enhance the interpretability of inconsistent semantics as evidence for users, we develop explanation reasoning layer to supplement the contextual information of inconsistent semantics, resulting in more understandable evidence semantics. Extensive experiments confirm the effectiveness of our model on three datasets and improved performance by up to 2.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
大喜喜发布了新的文献求助10
4秒前
47发布了新的文献求助10
4秒前
李爱国应助青椒肉丝采纳,获得10
4秒前
5秒前
kuu完成签到,获得积分10
5秒前
邓布利多发布了新的文献求助10
5秒前
天人发布了新的文献求助20
5秒前
顾北发布了新的文献求助10
6秒前
赘婿应助wangqi采纳,获得10
6秒前
7秒前
深情安青应助超级不惜采纳,获得10
7秒前
susie发布了新的文献求助10
8秒前
garrettwang应助xrb采纳,获得10
8秒前
调皮铸海完成签到 ,获得积分10
8秒前
无辜不言发布了新的文献求助10
9秒前
yw发布了新的文献求助10
9秒前
垃圾桶发布了新的文献求助10
10秒前
10秒前
10秒前
zheng2001完成签到,获得积分10
10秒前
请各位大佬帮帮小白完成签到,获得积分10
10秒前
10秒前
小鲨完成签到,获得积分10
11秒前
禹代秋完成签到,获得积分10
11秒前
思源应助111采纳,获得10
12秒前
12秒前
maple完成签到,获得积分10
12秒前
whs完成签到 ,获得积分10
13秒前
顾北完成签到,获得积分10
13秒前
宋兽兽完成签到,获得积分20
14秒前
唐不苦完成签到,获得积分10
14秒前
melon完成签到,获得积分10
14秒前
14秒前
mengxiaofeng完成签到,获得积分10
15秒前
青椒肉丝发布了新的文献求助10
16秒前
lxt819发布了新的文献求助10
17秒前
18秒前
JamesPei应助粗犷的碧灵采纳,获得30
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
EPR Spectroscopy: Fundamentals and Methods 500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444265
求助须知:如何正确求助?哪些是违规求助? 3040376
关于积分的说明 8980892
捐赠科研通 2728958
什么是DOI,文献DOI怎么找? 1496770
科研通“疑难数据库(出版商)”最低求助积分说明 691880
邀请新用户注册赠送积分活动 689396