MFIR: Multimodal fusion and inconsistency reasoning for explainable fake news detection

计算机科学 模态(人机交互) 语义学(计算机科学) 可解释性 模式 串联(数学) 特征(语言学) 人工智能 自然语言处理 情态动词 情报检索 语言学 哲学 社会科学 化学 数学 组合数学 社会学 高分子化学 程序设计语言
作者
Lianwei Wu,Yuzhou Long,Chao Gao,Zhen Wang,Yanning Zhang
出处
期刊:Information Fusion [Elsevier]
卷期号:100: 101944-101944 被引量:94
标识
DOI:10.1016/j.inffus.2023.101944
摘要

Fake news possesses a destructive and negative impact on our lives. With the rapid growth of multimodal content in social media communities, multimodal fake news detection has received increasing attention. Most existing approaches focus on learning the respective deep semantics of various modalities and integrating them by traditional fusion modes (like concatenation or addition, etc.) for improving detection performance, which has achieved a certain degree of success. However, they have two crucial issues: (1) Shallow cross-modal feature fusion, and (2) Difficulty in capturing inconsistent information. To this end, we propose Multimodal Fusion and Inconsistency Reasoning (MFIR) model to discover multimodal inconsistent semantics for explainable fake news detection. Specifically, MFIR consists of three modules: (1) Different from the traditional fusion modes, cross-modal infiltration fusion is designed, which is absorbed in continuously infiltrating and correlating another modality features into its internal semantics based on the current modality, which can well ensure the retention of the contextual semantics of the original modality; (2) Multimodal inconsistent learning not only captures the local inconsistent semantics from the perspectives of text and vision, but also integrates the two types of local semantics to discover global inconsistent semantics in multimodal content; (3) To enhance the interpretability of inconsistent semantics as evidence for users, we develop explanation reasoning layer to supplement the contextual information of inconsistent semantics, resulting in more understandable evidence semantics. Extensive experiments confirm the effectiveness of our model on three datasets and improved performance by up to 2.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
西乡塘塘主完成签到,获得积分10
1秒前
所所应助南橘采纳,获得10
1秒前
yingziiii完成签到,获得积分10
2秒前
Hello应助瞿寒采纳,获得10
2秒前
3秒前
3秒前
K.I.D发布了新的文献求助10
4秒前
4秒前
d_ly完成签到,获得积分20
5秒前
李瑞康发布了新的文献求助10
5秒前
小蘑菇应助bae采纳,获得10
5秒前
yyer完成签到,获得积分10
6秒前
英勇飞机发布了新的文献求助10
6秒前
6秒前
冷妹君发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
龙龙龙完成签到,获得积分10
7秒前
9秒前
卓卓发布了新的文献求助10
10秒前
10秒前
dshihb发布了新的文献求助30
11秒前
11秒前
Laoxing258完成签到,获得积分10
13秒前
13秒前
zhang_y2发布了新的文献求助10
13秒前
Orange应助成就梦松采纳,获得10
14秒前
ding应助samllcloud采纳,获得10
14秒前
将寻发布了新的文献求助30
15秒前
刘老板发布了新的文献求助10
15秒前
Leo应助重要的小猫咪采纳,获得10
15秒前
16秒前
16秒前
落后的成仁完成签到,获得积分20
17秒前
大方万仇完成签到 ,获得积分10
17秒前
mr_wang发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355086
求助须知:如何正确求助?哪些是违规求助? 4487060
关于积分的说明 13968836
捐赠科研通 4387749
什么是DOI,文献DOI怎么找? 2410553
邀请新用户注册赠送积分活动 1403023
关于科研通互助平台的介绍 1376743