MFIR: Multimodal fusion and inconsistency reasoning for explainable fake news detection

计算机科学 模态(人机交互) 语义学(计算机科学) 可解释性 模式 串联(数学) 特征(语言学) 人工智能 自然语言处理 情态动词 情报检索 语言学 哲学 社会学 组合数学 化学 高分子化学 程序设计语言 社会科学 数学
作者
Lianwei Wu,Yuzhou Long,Chao Gao,Zhen Wang,Yanning Zhang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:100: 101944-101944 被引量:53
标识
DOI:10.1016/j.inffus.2023.101944
摘要

Fake news possesses a destructive and negative impact on our lives. With the rapid growth of multimodal content in social media communities, multimodal fake news detection has received increasing attention. Most existing approaches focus on learning the respective deep semantics of various modalities and integrating them by traditional fusion modes (like concatenation or addition, etc.) for improving detection performance, which has achieved a certain degree of success. However, they have two crucial issues: (1) Shallow cross-modal feature fusion, and (2) Difficulty in capturing inconsistent information. To this end, we propose Multimodal Fusion and Inconsistency Reasoning (MFIR) model to discover multimodal inconsistent semantics for explainable fake news detection. Specifically, MFIR consists of three modules: (1) Different from the traditional fusion modes, cross-modal infiltration fusion is designed, which is absorbed in continuously infiltrating and correlating another modality features into its internal semantics based on the current modality, which can well ensure the retention of the contextual semantics of the original modality; (2) Multimodal inconsistent learning not only captures the local inconsistent semantics from the perspectives of text and vision, but also integrates the two types of local semantics to discover global inconsistent semantics in multimodal content; (3) To enhance the interpretability of inconsistent semantics as evidence for users, we develop explanation reasoning layer to supplement the contextual information of inconsistent semantics, resulting in more understandable evidence semantics. Extensive experiments confirm the effectiveness of our model on three datasets and improved performance by up to 2.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bjbbh完成签到,获得积分10
1秒前
研友_VZG7GZ应助hhh采纳,获得10
1秒前
1秒前
1秒前
zhang发布了新的文献求助30
1秒前
1秒前
1秒前
3秒前
爱学习的瑞瑞子完成签到,获得积分10
3秒前
大佬发布了新的文献求助20
4秒前
4秒前
yizhi猫完成签到,获得积分20
4秒前
苦哈哈发布了新的文献求助10
4秒前
Alex完成签到,获得积分10
5秒前
矮小的珠发布了新的文献求助10
5秒前
6秒前
bb发布了新的文献求助10
6秒前
朱建军应助178181采纳,获得10
6秒前
wssamuel完成签到 ,获得积分10
7秒前
7秒前
7秒前
香蕉醉山发布了新的文献求助30
8秒前
8秒前
不太想学习完成签到 ,获得积分10
8秒前
汉堡包应助Threeeeeee采纳,获得10
9秒前
Akim应助简单山水采纳,获得10
9秒前
9秒前
9秒前
9秒前
心灵美从寒完成签到,获得积分10
10秒前
10秒前
audodo完成签到,获得积分20
10秒前
11秒前
宇清完成签到,获得积分10
11秒前
青梅发布了新的文献求助10
11秒前
斯文败类应助zjmsb采纳,获得10
12秒前
goodjust完成签到 ,获得积分10
12秒前
hhh发布了新的文献求助10
12秒前
FashionBoy应助烩面大师采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979122
求助须知:如何正确求助?哪些是违规求助? 3522967
关于积分的说明 11215682
捐赠科研通 3260436
什么是DOI,文献DOI怎么找? 1799990
邀请新用户注册赠送积分活动 878770
科研通“疑难数据库(出版商)”最低求助积分说明 807061