化学
硝化作用
蔗糖
反硝化
环境化学
亚硝酸盐
碱度
铵
活性炭
核化学
无机化学
硝酸盐
食品科学
有机化学
吸附
氮气
作者
Wen Qin,Chengyuan Zheng,Jingru Yang,Miaoqing Hong,Yang Song,Jun Ma
标识
DOI:10.1016/j.envres.2023.117436
摘要
In order to accelerate the start-up of biological activated carbon (BAC) filters and enhance ammonium (NH4+-N) removal performance, three substrates (sucrose and/or nano manganese dioxide (nMnO2)) pre-loaded BAC filters were set up to investigate the pollutants removals and microbiological characteristics for a long-term operation of 197 days. The average NH4+-N removal performance treated by the sucrose coupled with nMnO2 loaded BAC filter was the highest (71.18 %), which was 3.83 times of that by the control filter (18.58 %). 29 % of NH4+-N treated by the sucrose coupled with nMnO2 loaded BAC removed through the traditional nitrification and denitrification, or simultaneous nitrification and denitrification (SND) pathways according to the calculation of the alkalinity consumption (6.12 mmol/L). There was no leakage of carbon source and Mn, and no accumulation of nitrite from the substrates loaded BAC. The dominant bacteria in the sucrose coupled with nMnO2 loaded BAC were Dechloromona (accounting for 8.02% of the total bacterial) and Acidaminobacter (accounting for 15.16% of total bacterial) on the Day 180, which had the capacity of nitrification or denitrification. NH4+-N and micropollutants removals treated by the combined process of peracetic acid (PAA) pre-oxidation and substrates loaded BAC were significant due to the generation of assimilable organic carbon (AOC) (5.98 ± 1.93 μg-C/mL) by PAA (100 μM)/Fe2+ pre-oxidation and the higher biomass ((4.57 ± 3.07) × 107 cells/g DW BAC) in the sucrose coupled with nMnO2 loaded BAC filter. Therefore, nMnO2 coupling carbon source pre-loading strategy could not only enhance initial colonization, but also promote pollutants removals for long-term operation.
科研通智能强力驱动
Strongly Powered by AbleSci AI