A novel machine learning method for multiaxial fatigue life prediction: Improved adaptive neuro-fuzzy inference system

人工神经网络 超参数 自适应神经模糊推理系统 计算机科学 人工智能 非线性系统 机器学习 外推法 模糊逻辑 模糊控制系统 数学 数学分析 物理 量子力学
作者
Jianxiong Gao,Fei Heng,Yiping Yuan,Yuanyuan Liu
出处
期刊:International Journal of Fatigue [Elsevier]
卷期号:178: 108007-108007 被引量:57
标识
DOI:10.1016/j.ijfatigue.2023.108007
摘要

In this study, a neuro-fuzzy-based machine learning method is developed to predict the multiaxial fatigue life of various metallic materials. First, the fuzzy inference system and neural network are combined to identify and capture the nonlinear mapping relationship between multiaxial fatigue damage parameters and fatigue life. Non-proportionality and phase differences are introduced to characterize different loading paths. Next, the Adam algorithm is employed to update the premise parameters of the original model to achieve fast and accurate convergence. Then, subtractive clustering is applied to extract fuzzy rules between input variables and output for more efficient prediction. Moreover, the hyperparameters in the proposed model are automatically optimized by the adaptive opposition slime mould algorithm to obtain the optimal model. The predictive performance of the proposed model is verified by fatigue experimental data for six materials in published literature, which indicates that the proposed model can effectively predict the fatigue life of various materials under different loading paths. Meanwhile, compared with six classical machine learning models, it is found that the proposed model has better predictive performance and extrapolation capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
JamesPei应助王威采纳,获得10
1秒前
2秒前
3秒前
东方元语应助无极微光采纳,获得20
3秒前
3秒前
3秒前
3秒前
lzh发布了新的文献求助30
3秒前
汉堡包应助静香采纳,获得10
4秒前
Saintwords发布了新的文献求助50
5秒前
5秒前
www发布了新的文献求助10
5秒前
6秒前
cl完成签到,获得积分10
6秒前
6秒前
绝尘发布了新的文献求助10
6秒前
哈哈哈发布了新的文献求助10
6秒前
6秒前
超级雍完成签到,获得积分10
6秒前
Siri完成签到,获得积分10
6秒前
7秒前
清竹完成签到,获得积分10
7秒前
Tian完成签到,获得积分10
7秒前
Jasper应助CZXB采纳,获得10
8秒前
8秒前
8秒前
小二郎应助王威采纳,获得10
8秒前
8秒前
布谷发布了新的文献求助10
8秒前
踏实幻巧发布了新的文献求助10
8秒前
搜集达人应助搞怪藏今采纳,获得10
9秒前
徐小发布了新的文献求助10
10秒前
在水一方应助lappland采纳,获得10
10秒前
jjssqq完成签到,获得积分20
10秒前
10秒前
Akim应助lisbattery采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473591
求助须知:如何正确求助?哪些是违规求助? 4575682
关于积分的说明 14353923
捐赠科研通 4503208
什么是DOI,文献DOI怎么找? 2467556
邀请新用户注册赠送积分活动 1455373
关于科研通互助平台的介绍 1429362