Tuning defect chemistry of vertical graphene arrays toward highly stable and dendrite-free sodium metal anodes

堆积 成核 石墨烯 阳极 化学物理 枝晶(数学) 阴极 电镀(地质) 化学 剥离(纤维) 纳米技术 化学工程 材料科学 复合材料 电极 物理化学 几何学 数学 有机化学 地球物理学 地质学 工程类
作者
Haiyu Wang,Ping Wang,Ling Wu,Hui Duan,Yu Chen,Tong Li,Kequan Chen,Mingliang He,Zhipeng Wang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:477: 146930-146930 被引量:1
标识
DOI:10.1016/j.cej.2023.146930
摘要

Vertical graphene (VG) arrays, characteristic of particularly porous microscopic structures, are one promising host to accommodate Na deposition, relieve the formidable volume change and eliminate uncontrolled dendrite growth, by decreasing the local current density. However, in practice, the prepared VG arrays possess superabundant defect sites in the local tip positions, which would guide the accumulation of rampant Na-ion flux concentration on these tip defect sites, and thus result in strong local electric field distribution and the divisional dendritic growth. Herein, a novel reconstruction strategy is proposed to re-build the edges and stacking of VG, by removing some unstable carbon defects and changing turbostratic stacking structure of VG to a Bernal stacking mode of the graphited VG, which enables to guide the comparatively smaller and stable interface with Na. Benefiting from the synergistic effect of microscopic structure and defect chemistry design, the re-build VG achieves a long-term reversible Na plating/stripping over 6400 h at an areal capacity of 8 mAh cm−2 in half cell, as well as a long cycle life of up to 3300 h at 1 mA cm−2 with a plating capacity of 4 mAh cm−2 in symmetric cells. Concomitantly, the density functional theory calculations demonstrate that Na atoms tend to nucleate and grow into lateral Na plating on the re-build VG arrays at an atomic level. As a result, the full cell coupled with a P2-Na2/3Ni1/3Mn1/3Ti1/3O2 cathode has a predominant improved cycling stability. This microscopic structure/defect chemistry engineering strategy provides new insight into guiding the uniform deposition of Na metal for high-performance sodium metal battery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guchenniub发布了新的文献求助10
1秒前
赖林完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
无辜之卉完成签到,获得积分20
3秒前
琪琪七七完成签到,获得积分10
3秒前
3秒前
zhuzhuxia发布了新的文献求助10
4秒前
5秒前
pengyukun完成签到,获得积分10
6秒前
6秒前
南滨发布了新的文献求助10
6秒前
无辜之卉发布了新的文献求助30
7秒前
zhmmdlh发布了新的文献求助10
7秒前
7秒前
啦啦啦发布了新的文献求助10
7秒前
9秒前
一个有点长的序完成签到 ,获得积分10
9秒前
兴奋寄容发布了新的文献求助20
10秒前
10秒前
11秒前
11秒前
13秒前
闾丘惜萱发布了新的文献求助10
13秒前
华仔应助cloud采纳,获得10
13秒前
yao发布了新的文献求助10
13秒前
李爱国应助zhuzhuxia采纳,获得10
15秒前
赘婿应助hnututu采纳,获得50
15秒前
上官若男应助hnututu采纳,获得50
15秒前
华仔应助hnututu采纳,获得50
15秒前
cocolu应助hnututu采纳,获得50
15秒前
Owen应助hnututu采纳,获得50
15秒前
Hello应助hnututu采纳,获得50
15秒前
Ava应助hnututu采纳,获得50
15秒前
丘比特应助hnututu采纳,获得50
15秒前
情怀应助hnututu采纳,获得50
15秒前
上官若男应助hnututu采纳,获得50
15秒前
sunset发布了新的文献求助10
16秒前
彭于晏应助李嘉图采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315797
求助须知:如何正确求助?哪些是违规求助? 2947541
关于积分的说明 8537402
捐赠科研通 2623653
什么是DOI,文献DOI怎么找? 1435336
科研通“疑难数据库(出版商)”最低求助积分说明 665538
邀请新用户注册赠送积分活动 651391