清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and evaluation of a risk assessment tool for the personalized screening of breast cancer in Chinese populations: A prospective cohort study

医学 乳腺癌 列线图 四分位间距 前瞻性队列研究 风险评估 危险系数 队列 癌症 比例危险模型 队列研究 内科学 置信区间 肿瘤科 计算机安全 计算机科学
作者
Juan Zhu,Le Wang,Weiwei Gong,Xue Li,You‐Qing Wang,Chen Zhu,Huizhang Li,Lei Shi,Chen Yang,Lingbin Du
出处
期刊:Cancer [Wiley]
卷期号:130 (S8): 1403-1414 被引量:1
标识
DOI:10.1002/cncr.35095
摘要

Abstract Introduction Breast cancer is a significant contributor to female mortality, exerting a public health burden worldwide, especially in China, where risk‐prediction models with good discriminating accuracy for breast cancer are still scarce. Methods A multicenter screening cohort study was conducted as part of the Cancer Screening Program in Urban China. Dwellers aged 40–74 years were recruited between 2014 and 2019 and prospectively followed up until June 30, 2021. The entire data set was divided by year of enrollment to develop a prediction model and validate it internally. Multivariate Cox regression was used to ascertain predictors and develop a risk‐prediction model. Model performance at 1, 3, and 5 years was evaluated using the area under the curve, nomogram, and calibration curves and subsequently validated internally. The prediction model incorporates selected factors that are assigned appropriate weights to establish a risk‐scoring algorithm. Guided by the risk score, participants were categorized into low‐, medium‐, and high‐risk groups for breast cancer. The cutoff values were chosen using X‐tile plots. Sensitivity analysis was conducted by categorizing breast cancer risk into the low‐ and high‐risk groups. A decision curve analysis was used to assess the clinical utility of the model. Results Of the 70,520 women enrolled, 447 were diagnosed with breast cancer (median follow‐up, 6.43 [interquartile range, 3.99–7.12] years). The final prediction model included age and education level (high, hazard ratio [HR], 2.01 [95% CI, 1.31–3.09]), menopausal age (≥50 years, 1.34 [1.03–1.75]), previous benign breast disease (1.42 [1.09–1.83]), and reproductive surgery (1.28 [0.97–1.69]). The 1‐year area under the curve was 0.607 in the development set and 0.643 in the validation set. Moderate predictive discrimination and satisfactory calibration were observed for the validation set. The risk predictions demonstrated statistically significant differences between the low‐, medium‐, and high‐risk groups ( p < .001). Compared with the low‐risk group, women in the high‐ and medium‐risk groups posed a 2.17‐fold and 1.62‐fold elevated risk of breast cancer, respectively. Similar results were obtained in the sensitivity analyses. A web‐based calculator was developed to estimate risk stratification for women. Conclusions This study developed and internally validated a risk‐adapted and user‐friendly risk‐prediction model by incorporating easily accessible variables and female factors. The personalized model demonstrated reliable calibration and moderate discriminative ability. Risk‐stratified screening strategies contribute to precisely distinguishing high‐risk individuals from asymptomatic individuals and prioritizing breast cancer screening. Plain Language Summary Breast cancer remains a burden in China. To enhance breast cancer screening, we need to incorporate population stratification in screening. Accurate risk‐prediction models for breast cancer remain scarce in China. We established and validated a risk‐adapted and user‐friendly risk‐prediction model by incorporating routinely available variables along with female factors. Using this risk‐stratified model helps accurately identify high‐risk individuals, which is of significant importance when considering integrating individual risk assessments into mass screening programs for breast cancer. Current clinical breast cancer screening lacks a constructive clinical pathway and guiding recommendations. Our findings can better guide clinicians and health care providers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋夜临完成签到,获得积分10
9秒前
10秒前
gobi完成签到 ,获得积分10
18秒前
CHEN完成签到 ,获得积分10
21秒前
huiluowork完成签到 ,获得积分10
34秒前
田田完成签到 ,获得积分10
43秒前
含蓄的问寒完成签到,获得积分10
44秒前
平平安安完成签到 ,获得积分10
51秒前
平平安安关注了科研通微信公众号
1分钟前
mmyhn发布了新的文献求助10
1分钟前
稳重傲晴完成签到 ,获得积分10
1分钟前
1分钟前
mmyhn发布了新的文献求助10
1分钟前
玛琳卡迪马完成签到,获得积分10
1分钟前
青出于蓝蔡完成签到,获得积分10
1分钟前
2分钟前
mmyhn发布了新的文献求助10
2分钟前
2分钟前
xun完成签到,获得积分20
2分钟前
zijingsy完成签到 ,获得积分10
2分钟前
26347完成签到 ,获得积分10
2分钟前
meijuan1210完成签到 ,获得积分10
2分钟前
2分钟前
Cole驳回了SciGPT应助
2分钟前
天边的云彩完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
山山而川完成签到 ,获得积分10
3分钟前
courage完成签到,获得积分10
3分钟前
科研通AI2S应助jlwang采纳,获得10
3分钟前
锋feng完成签到 ,获得积分10
4分钟前
DJ_Tokyo完成签到,获得积分10
4分钟前
4分钟前
悟川完成签到 ,获得积分10
4分钟前
liuliu完成签到,获得积分10
5分钟前
5分钟前
Emperor完成签到 ,获得积分0
5分钟前
A,w携念e行ོ完成签到,获得积分10
5分钟前
Cole发布了新的文献求助10
5分钟前
风信子完成签到,获得积分10
5分钟前
Aaman完成签到,获得积分10
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450460
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003759
捐赠科研通 2734604
什么是DOI,文献DOI怎么找? 1500096
科研通“疑难数据库(出版商)”最低求助积分说明 693341
邀请新用户注册赠送积分活动 691477