准周期函数
物理
有界函数
格子(音乐)
交叉口(航空)
李雅普诺夫指数
数学物理
凝聚态物理
量子力学
数学分析
数学
航空航天工程
声学
工程类
非线性系统
作者
Z. T. Wang,Yu Zhang,Li Wang,Shu Chen
出处
期刊:Physical review
日期:2023-11-03
卷期号:108 (17)
标识
DOI:10.1103/physrevb.108.174202
摘要
We investigate the effect of an additional modulation parameter $\ensuremath{\delta}$ on the mobility properties of quasiperiodic lattices described by a generalized Ganeshan-Pixley-Das Sarma model with two onsite modulation parameters. For the case with bounded quasiperiodic potential, we unveil the existence of self-duality relation, independent of $\ensuremath{\delta}$. By applying Avila's global theory, we analytically derive Lyapunov exponents in the whole parameter space, which enables us to determine mobility edges or anomalous mobility edges exactly. Our analytical results indicate that the mobility edge equation is described by two curves and their intersection with the spectrum gives the true mobility edge. Tuning the strength parameter $\ensuremath{\delta}$ can change the spectrum of the quasiperiodic lattice, and thus engineers the mobility of quasiperiodic systems, giving rise to completely extended, partially localized, and completely localized regions. For the case with unbounded quasiperiodic potential, we also obtain the analytical expression of the anomalous mobility edge, which separates localized states from critical states. By increasing the strength parameter $\ensuremath{\delta}$, we find that the critical states can be destroyed gradually and finally vanish.
科研通智能强力驱动
Strongly Powered by AbleSci AI