化学
分子信标
寡核苷酸
马拉特1
计算生物学
底漆(化妆品)
荧光
分子生物学
DNA
核糖核酸
长非编码RNA
生物化学
生物
基因
物理
有机化学
量子力学
作者
Wenjing Liu,Lingfei Zhang,Chunyang Zhang
标识
DOI:10.1021/acs.analchem.3c03575
摘要
Long noncoding RNAs (lncRNAs) are key regulators in numerous pathological and physiological processes, and their aberrant expression is implicated in many diseases. Herein, we develop a programmable feedback network with continuously activatable molecular beacon (MB) fluorescence for one-step quantification of mammalian-metastasis-associated lung adenocarcinoma transcript 1 (lncRNA MALAT1) in clinical breast tissues. We introduce a functional MB with three domains, including a substrate for lncRNA MALAT1 recognition, a template for strand displacement amplification (SDA), and a reporter for signal output with FAM fluorescence being quenched by BHQ1. When MALAT1 is present, it recognizes and unfolds the MB, leading to the recovery of FAM fluorescence. Once the MB is opened, multiple rounds of SDA reaction are automatically initiated by recruiting primer, KF DNA polymerase, and Nt.BbvCI nicking enzyme, inducing the opening of more MBs and the dissociation of more FAM/BHQ1 pairs. Consequently, a feedback network is constructed through multicycle cascade SDA, achieving the exponential accumulation of fluorescence signals for accurate quantification of MALAT1. In this assay, only two oligonucleotides (i.e., MB and primer) are involved for the establishment of a feedback amplification network, greatly simplifying the design of the reaction system. Moreover, this assay requires only one step to realize the isothermal exponential amplification for real-time monitoring of MALAT1 with attomolar sensitivity. This assay displays single-base mismatch selectivity with high anti-interference capability, and it can further quantify endogenous MALAT1 at the single-cell level and differentiate MALAT1 expression between breast cancer patient tissues and healthy person tissues.
科研通智能强力驱动
Strongly Powered by AbleSci AI