Novel Insights into Osteoclast Energy Metabolism

破骨细胞 骨重建 细胞生物学 生物 骨吸收 线粒体生物发生 代谢途径 重编程 细胞代谢 线粒体 神经科学 新陈代谢 细胞 生物化学 内分泌学 体外
作者
María G. Ledesma-Colunga,Vanessa Passin,Franziska Lademann,Lorenz C. Hofbauer,Martina Rauner
出处
期刊:Current Osteoporosis Reports [Springer Science+Business Media]
卷期号:21 (6): 660-669 被引量:8
标识
DOI:10.1007/s11914-023-00825-3
摘要

Abstract Purpose of Review Osteoclasts are crucial for the dynamic remodeling of bone as they resorb old and damaged bone, making space for new bone. Metabolic reprogramming in these cells not only supports phenotypic changes, but also provides the necessary energy for their highly energy-consuming activity, bone resorption. In this review, we highlight recent developments in our understanding of the metabolic adaptations that influence osteoclast behavior and the overall remodeling of bone tissue. Recent Findings Osteoclasts undergo metabolic reprogramming to meet the energy demands during their transition from precursor cells to fully mature bone-resorbing osteoclasts. Recent research has made considerable progress in pinpointing crucial metabolic adaptations and checkpoint proteins in this process. Notably, glucose metabolism, mitochondrial biogenesis, and oxidative respiration were identified as essential pathways involved in osteoclast differentiation, cytoskeletal organization, and resorptive activity. Furthermore, the interaction between these pathways and amino acid and lipid metabolism adds to the complexity of the process. These interconnected processes can function as diverse fuel sources or have independent regulatory effects, significantly influencing osteoclast function. Summary Energy metabolism in osteoclasts involves various substrates and pathways to meet the energetic requirements of osteoclasts throughout their maturation stages. This understanding of osteoclast biology may provide valuable insights for modulating osteoclast activity during the pathogenesis of bone-related disorders and may pave the way for the development of innovative therapeutic strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨小杨应助lanshuitai采纳,获得10
刚刚
1秒前
1秒前
科研狗完成签到 ,获得积分10
2秒前
2秒前
史克珍香完成签到 ,获得积分10
3秒前
3秒前
4秒前
lxs完成签到,获得积分10
4秒前
4秒前
GQ发布了新的文献求助10
4秒前
SHF完成签到,获得积分10
6秒前
勤劳平彤发布了新的文献求助10
7秒前
大个应助雨碎寒江采纳,获得10
8秒前
9秒前
Meveee发布了新的文献求助10
10秒前
10秒前
kaka完成签到,获得积分10
11秒前
wanci应助kkk采纳,获得10
12秒前
12秒前
12秒前
爆米花应助zs采纳,获得10
14秒前
UntilYou完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
llay完成签到,获得积分20
16秒前
poison完成签到 ,获得积分10
17秒前
香蕉觅云应助勤劳平彤采纳,获得10
17秒前
realha发布了新的文献求助10
17秒前
17秒前
科研通AI6应助GB采纳,获得10
18秒前
18秒前
CipherSage应助hehehe采纳,获得10
18秒前
科目三应助花痴的电灯泡采纳,获得10
19秒前
dada完成签到,获得积分10
19秒前
21秒前
21秒前
wutong发布了新的文献求助10
22秒前
雨碎寒江发布了新的文献求助10
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226097
求助须知:如何正确求助?哪些是违规求助? 4397649
关于积分的说明 13687147
捐赠科研通 4262131
什么是DOI,文献DOI怎么找? 2338954
邀请新用户注册赠送积分活动 1336369
关于科研通互助平台的介绍 1292336