SafeSpace MFNet: Precise and Efficient MultiFeature Drone Detection Network

无人机 可扩展性 特征(语言学) 计算机科学 失败 人工智能 特征工程 特征提取 深度学习 机器学习 实时计算 数据挖掘 数据库 并行计算 生物 语言学 哲学 遗传学
作者
Misha Urooj Khan,Mahnoor Dil,Muhammad Zeshan Alam,Farooq Alam Orakazi,Abdullah M. Almasoud,Zeeshan Kaleem,Chau Yuen
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 3106-3118 被引量:5
标识
DOI:10.1109/tvt.2023.3323313
摘要

The increasing prevalence of unmanned aerial vehicles (UAVs), commonly known as drones, has generated a demand for reliable detection systems. The inappropriate use of drones presents potential security and privacy hazards, particularly concerning sensitive facilities. Consequently, a critical necessity revolves around the development of a proficient system with the capability to precisely identify UAVs and other flying objects even in challenging scenarios. Although advancements have been made in deep learning models, obstacles such as computational intricacies, precision limitations, and scalability issues persist. To overcome those obstacles, we proposed the concept of MultiFeatureNet (MFNet), a solution that enhances feature representation by capturing the most concentrated feature maps. Additionally, we present MultiFeatureNet-Feature Attention (MFNet-FA), a technique that adaptively weights different channels of the input feature maps. To meet the requirements of multi-scale detection, we presented the versions of MFNet and MFNet-FA, namely the small (S), medium (M), and large (L). The outcomes reveal notable performance enhancements. For optimal bird detection, MFNet-M (Ablation study 2) achieves an impressive precision of 99.8%, while for UAV detection, MFNet-L (Ablation study 2) achieves a precision score of 97.2%. Among the options, MFNet-FA-S (Ablation study 3) emerges as the most resource-efficient alternative, considering its small feature map size, computational demands (GFLOPs), and operational efficiency (in frame per second). This makes it particularly suitable for deployment on hardware with limited capabilities. Additionally, MFNet-FA-S (Ablation study 3) stands out for its swift real-time inference and multiple-object detection due to the incorporation of the FA module. The proposed MFNet-L with the focus module (Ablation study 2) demonstrates the most remarkable classification outcomes, boasting an average precision of 98.4%, average recall of 96.6%, average mean average precision (mAP) of 98.3%, and average intersection over union (IoU) of 72.8%. To encourage reproducible research, the dataset, and code for MFNet are freely available as an open-source project: github.com/ZeeshanKaleem/MultiFeatureNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王某完成签到,获得积分20
1秒前
2秒前
Akim应助椿人采纳,获得10
2秒前
bkagyin应助椿人采纳,获得10
2秒前
田様应助椿人采纳,获得10
2秒前
T拐拐发布了新的文献求助10
3秒前
loski发布了新的文献求助10
5秒前
6秒前
6秒前
Hugo完成签到,获得积分10
6秒前
6秒前
guoguoguo发布了新的文献求助10
7秒前
10秒前
YT完成签到,获得积分10
10秒前
11秒前
young完成签到,获得积分10
11秒前
顺心书琴完成签到,获得积分10
11秒前
11秒前
guoguoguo完成签到,获得积分10
13秒前
鸭梨发布了新的文献求助10
13秒前
14秒前
蒋念寒发布了新的文献求助10
15秒前
斯文败类应助王某采纳,获得30
15秒前
16秒前
峥2发布了新的文献求助10
16秒前
爆米花应助景清采纳,获得10
16秒前
17秒前
18秒前
qq发布了新的文献求助10
19秒前
kkscanl完成签到 ,获得积分10
19秒前
Connor完成签到,获得积分10
19秒前
WWWW发布了新的文献求助50
20秒前
20秒前
20秒前
美丽的凌蝶完成签到,获得积分10
21秒前
宋子琛发布了新的文献求助10
21秒前
wen完成签到 ,获得积分10
21秒前
安详凡发布了新的文献求助10
21秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992117
求助须知:如何正确求助?哪些是违规求助? 3533123
关于积分的说明 11261129
捐赠科研通 3272496
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882717
科研通“疑难数据库(出版商)”最低求助积分说明 809425