SafeSpace MFNet: Precise and Efficient MultiFeature Drone Detection Network

无人机 可扩展性 特征(语言学) 计算机科学 失败 人工智能 特征工程 特征提取 深度学习 机器学习 实时计算 数据挖掘 数据库 并行计算 生物 语言学 哲学 遗传学
作者
Misha Urooj Khan,Mahnoor Dil,Muhammad Zeshan Alam,Farooq Alam Orakazi,Abdullah M. Almasoud,Zeeshan Kaleem,Chau Yuen
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 3106-3118 被引量:5
标识
DOI:10.1109/tvt.2023.3323313
摘要

The increasing prevalence of unmanned aerial vehicles (UAVs), commonly known as drones, has generated a demand for reliable detection systems. The inappropriate use of drones presents potential security and privacy hazards, particularly concerning sensitive facilities. Consequently, a critical necessity revolves around the development of a proficient system with the capability to precisely identify UAVs and other flying objects even in challenging scenarios. Although advancements have been made in deep learning models, obstacles such as computational intricacies, precision limitations, and scalability issues persist. To overcome those obstacles, we proposed the concept of MultiFeatureNet (MFNet), a solution that enhances feature representation by capturing the most concentrated feature maps. Additionally, we present MultiFeatureNet-Feature Attention (MFNet-FA), a technique that adaptively weights different channels of the input feature maps. To meet the requirements of multi-scale detection, we presented the versions of MFNet and MFNet-FA, namely the small (S), medium (M), and large (L). The outcomes reveal notable performance enhancements. For optimal bird detection, MFNet-M (Ablation study 2) achieves an impressive precision of 99.8%, while for UAV detection, MFNet-L (Ablation study 2) achieves a precision score of 97.2%. Among the options, MFNet-FA-S (Ablation study 3) emerges as the most resource-efficient alternative, considering its small feature map size, computational demands (GFLOPs), and operational efficiency (in frame per second). This makes it particularly suitable for deployment on hardware with limited capabilities. Additionally, MFNet-FA-S (Ablation study 3) stands out for its swift real-time inference and multiple-object detection due to the incorporation of the FA module. The proposed MFNet-L with the focus module (Ablation study 2) demonstrates the most remarkable classification outcomes, boasting an average precision of 98.4%, average recall of 96.6%, average mean average precision (mAP) of 98.3%, and average intersection over union (IoU) of 72.8%. To encourage reproducible research, the dataset, and code for MFNet are freely available as an open-source project: github.com/ZeeshanKaleem/MultiFeatureNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助彩虹毛毛虫采纳,获得10
3秒前
NI完成签到,获得积分10
7秒前
7秒前
萧水白应助云长的茶采纳,获得10
8秒前
y蕙完成签到 ,获得积分10
9秒前
12秒前
Hello应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
FashionBoy应助心灵美语兰采纳,获得10
13秒前
iVANPENNY应助Wang采纳,获得10
15秒前
嘉心糖应助Wang采纳,获得30
15秒前
Jenkang完成签到,获得积分10
16秒前
WangShIbei应助浅笑成风采纳,获得10
18秒前
18秒前
123456完成签到,获得积分20
18秒前
19秒前
爱洗澡的拖鞋完成签到 ,获得积分0
19秒前
renhu完成签到,获得积分10
19秒前
mdmd麦麦应助chaserlife采纳,获得10
19秒前
单身的凡雁完成签到 ,获得积分20
20秒前
23秒前
星辰大海应助星辰亦会累采纳,获得20
23秒前
24秒前
27秒前
laryc完成签到,获得积分10
27秒前
123456发布了新的文献求助30
28秒前
29秒前
Wang完成签到,获得积分10
40秒前
Mira完成签到,获得积分10
42秒前
豆子完成签到,获得积分10
52秒前
wanci应助pp采纳,获得10
53秒前
快乐烧鹅发布了新的文献求助10
54秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313635
求助须知:如何正确求助?哪些是违规求助? 2945967
关于积分的说明 8527797
捐赠科研通 2621588
什么是DOI,文献DOI怎么找? 1433891
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650637