A novel time-delay neural grey model and its applications

自回归积分移动平均 人工神经网络 计算机科学 自回归模型 一般化 系列(地层学) 非线性系统 支持向量机 期限(时间) 时间序列 人工智能 算法 数学 机器学习 统计 生物 物理 数学分析 量子力学 古生物学
作者
Dajiang Lei,Tong Li,Liping Zhang,Qun Liu,Weisheng Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121673-121673 被引量:7
标识
DOI:10.1016/j.eswa.2023.121673
摘要

Grey system theory uses differential equations to model small sample time series to predict the short-term development law of things in the future. Since the most classical GM(1, 1) model was proposed, many scholars have improved it and derived various grey models that can predict linear or nonlinear time series. However, the existing grey models are still not accurate enough for constructing background values and parameter estimation methods. In order to improve the accuracy and applicability of the grey model, a novel neural grey model with accumulated time delays is proposed in this paper. In this model, the whitening equation of the grey model is constructed by combining the long short-term memory network to add time-delay variables to the original grey model. Second, the neural ordinary differential equation (NODE) is used to train the model to determine the time delays, the time-delay weights, and the model parameters to obtain better predictions. Finally, the Euler method is used to get the final prediction series. The new model’s performance is tested through experiments on energy consumption and CO2 emissions prediction. The results were compared with some grey models, support vector regression (SVR), and autoregressive integrated moving average models (ARIMA). It can be concluded that the new model has better generalization performance and higher prediction accuracy than the selected comparative models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lrmachine发布了新的文献求助30
刚刚
小米呀发布了新的文献求助30
1秒前
自由若剑发布了新的文献求助20
1秒前
Orange应助时光友岸采纳,获得10
1秒前
彭于晏应助Yang采纳,获得10
2秒前
2秒前
青塘龙仔发布了新的文献求助10
2秒前
在水一方应助kuikui1100采纳,获得10
2秒前
gaigai完成签到,获得积分10
3秒前
简化为完成签到,获得积分10
3秒前
周周完成签到 ,获得积分10
3秒前
斯文败类应助callmefather采纳,获得10
4秒前
芝麻糊完成签到,获得积分10
4秒前
5秒前
英俊的铭应助mumu采纳,获得10
5秒前
tuotuo完成签到,获得积分10
5秒前
哦哦哦完成签到,获得积分10
5秒前
6秒前
我是老大应助shunyi采纳,获得10
6秒前
俭朴的皮卡丘完成签到,获得积分10
7秒前
kingyuan发布了新的文献求助30
7秒前
7秒前
7秒前
8秒前
曾经的姒发布了新的文献求助10
10秒前
11秒前
AireenBeryl531应助卜念采纳,获得10
11秒前
12秒前
12秒前
rafa发布了新的文献求助10
13秒前
13秒前
所所应助朱颜采纳,获得10
13秒前
13秒前
佟玥发布了新的文献求助10
13秒前
小米呀完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
搜集达人应助细腻戒指采纳,获得30
16秒前
鹭立江头发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193830
求助须知:如何正确求助?哪些是违规求助? 4376175
关于积分的说明 13628611
捐赠科研通 4231092
什么是DOI,文献DOI怎么找? 2320710
邀请新用户注册赠送积分活动 1319080
关于科研通互助平台的介绍 1269416