A novel time-delay neural grey model and its applications

自回归积分移动平均 人工神经网络 计算机科学 自回归模型 一般化 系列(地层学) 非线性系统 支持向量机 期限(时间) 时间序列 人工智能 算法 数学 机器学习 统计 生物 物理 数学分析 量子力学 古生物学
作者
Dajiang Lei,Tong Li,Liping Zhang,Qun Liu,Weisheng Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121673-121673 被引量:7
标识
DOI:10.1016/j.eswa.2023.121673
摘要

Grey system theory uses differential equations to model small sample time series to predict the short-term development law of things in the future. Since the most classical GM(1, 1) model was proposed, many scholars have improved it and derived various grey models that can predict linear or nonlinear time series. However, the existing grey models are still not accurate enough for constructing background values and parameter estimation methods. In order to improve the accuracy and applicability of the grey model, a novel neural grey model with accumulated time delays is proposed in this paper. In this model, the whitening equation of the grey model is constructed by combining the long short-term memory network to add time-delay variables to the original grey model. Second, the neural ordinary differential equation (NODE) is used to train the model to determine the time delays, the time-delay weights, and the model parameters to obtain better predictions. Finally, the Euler method is used to get the final prediction series. The new model’s performance is tested through experiments on energy consumption and CO2 emissions prediction. The results were compared with some grey models, support vector regression (SVR), and autoregressive integrated moving average models (ARIMA). It can be concluded that the new model has better generalization performance and higher prediction accuracy than the selected comparative models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋词发布了新的文献求助30
1秒前
2秒前
2秒前
3秒前
3秒前
蒜蒜发布了新的文献求助30
3秒前
sopha完成签到,获得积分10
3秒前
3秒前
rorocris发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
烟花应助伶俐的采枫采纳,获得10
5秒前
coco关注了科研通微信公众号
6秒前
所爱皆在发布了新的文献求助10
6秒前
7秒前
7秒前
NexusExplorer应助花生采纳,获得10
8秒前
内向灵凡发布了新的文献求助10
8秒前
科研通AI2S应助jennyyu采纳,获得10
8秒前
等等发布了新的文献求助10
9秒前
共享精神应助橘子采纳,获得10
9秒前
Fen3i发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
小二郎应助lk采纳,获得10
10秒前
我是老大应助乌云采纳,获得10
10秒前
Achhz关注了科研通微信公众号
10秒前
11秒前
Akim应助李栗子采纳,获得10
11秒前
容二遥完成签到,获得积分10
12秒前
呆萌的白竹完成签到,获得积分10
12秒前
建建完成签到,获得积分10
12秒前
NI发布了新的文献求助10
12秒前
12秒前
13秒前
曹俊蔚发布了新的文献求助10
13秒前
思源应助霞霞采纳,获得10
13秒前
derlun发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049