Improved YOLOv8-Seg Network for Instance Segmentation of Healthy and Diseased Tomato Plants in the Growth Stage

增采样 分割 卷积(计算机科学) 特征(语言学) 人工智能 计算机科学 模式识别(心理学) 功能(生物学) 卷积神经网络 融合 算法 人工神经网络 图像(数学) 生物 进化生物学 哲学 语言学
作者
Xiang Yue,Kai Qi,Xinyi Na,Yang Zhang,Yanhua Liu,Cuihong Liu
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:13 (8): 1643-1643 被引量:39
标识
DOI:10.3390/agriculture13081643
摘要

The spread of infections and rot are crucial factors in the decrease in tomato production. Accurately segmenting the affected tomatoes in real-time can prevent the spread of illnesses. However, environmental factors and surface features can affect tomato segmentation accuracy. This study suggests an improved YOLOv8s-Seg network to perform real-time and effective segmentation of tomato fruit, surface color, and surface features. The feature fusion capability of the algorithm was improved by replacing the C2f module with the RepBlock module (stacked by RepConv), adding SimConv convolution (using the ReLU function instead of the SiLU function as the activation function) before two upsampling in the feature fusion network, and replacing the remaining conventional convolution with SimConv. The F1 score was 88.7%, which was 1.0%, 2.8%, 0.8%, and 1.1% higher than that of the YOLOv8s-Seg algorithm, YOLOv5s-Seg algorithm, YOLOv7-Seg algorithm, and Mask RCNN algorithm, respectively. Meanwhile, the segment mean average precision (segment mAP@0.5) was 92.2%, which was 2.4%, 3.2%, 1.8%, and 0.7% higher than that of the YOLOv8s-Seg algorithm, YOLOv5s-Seg algorithm, YOLOv7-Seg algorithm, and Mask RCNN algorithm. The algorithm can perform real-time instance segmentation of tomatoes with an inference time of 3.5 ms. This approach provides technical support for tomato health monitoring and intelligent harvesting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
玉灵子发布了新的文献求助10
3秒前
大力访波发布了新的文献求助20
3秒前
3秒前
Jasper应助感性的安露采纳,获得10
3秒前
qzs发布了新的文献求助10
4秒前
4秒前
zz发布了新的文献求助10
4秒前
Polaris完成签到,获得积分10
5秒前
5秒前
qinchuanniu完成签到,获得积分10
5秒前
xcky0917完成签到,获得积分10
7秒前
聪慧的凡灵应助田田田田采纳,获得10
7秒前
8秒前
FashionBoy应助玉灵子采纳,获得10
8秒前
研友_Z1WokL发布了新的文献求助10
8秒前
8秒前
lilac发布了新的文献求助10
9秒前
9秒前
无花果应助很多奶油采纳,获得10
10秒前
11秒前
积极的秋尽完成签到,获得积分10
11秒前
sun完成签到,获得积分10
12秒前
qzs完成签到,获得积分10
12秒前
111完成签到,获得积分10
12秒前
隐形曼青应助顺利紫山采纳,获得10
12秒前
Husky发布了新的文献求助10
12秒前
zhang完成签到 ,获得积分10
13秒前
专一的惜海完成签到,获得积分10
13秒前
万能图书馆应助弓长张采纳,获得10
13秒前
zz发布了新的文献求助10
13秒前
14秒前
daiyu完成签到,获得积分10
14秒前
执着的雨灵完成签到 ,获得积分10
14秒前
认真的傲柏完成签到,获得积分10
15秒前
玉灵子完成签到,获得积分20
16秒前
DoctorYan完成签到,获得积分10
16秒前
16秒前
16秒前
kent完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954228
求助须知:如何正确求助?哪些是违规求助? 3500273
关于积分的说明 11098748
捐赠科研通 3230782
什么是DOI,文献DOI怎么找? 1786143
邀请新用户注册赠送积分活动 869824
科研通“疑难数据库(出版商)”最低求助积分说明 801638