异步通信
同步(交流)
参数统计
理论(学习稳定性)
有界函数
计算机科学
航程(航空)
特征向量
功能(生物学)
曲率
区间(图论)
同步网络
拉普拉斯算子
拓扑(电路)
数学
物理
数学分析
统计
计算机网络
机器学习
进化生物学
复合材料
生物
材料科学
几何学
组合数学
量子力学
作者
Amirhossein Nazerian,Shirin Panahi,Francesco Sorrentino
标识
DOI:10.1038/s42005-023-01355-1
摘要
Abstract Systems that synchronize in nature are intrinsically different from one another, with possibly large differences from system to system. While a vast part of the literature has investigated the emergence of network synchronization for the case of small parametric mismatches, we consider the general case that parameter mismatches may be large. We present a unified stability analysis that predicts why the range of stability of the synchronous solution either increases or decreases with parameter heterogeneity for a given network. We introduce a parametric approach, based on the definition of a curvature contribution function, which allows us to estimate the effect of mismatches on the stability of the synchronous solution in terms of contributions of pairs of eigenvalues of the Laplacian. For cases in which synchronization occurs in a bounded interval of a parameter, we study the effects of parameter heterogeneity on both transitions (asynchronous to synchronous and synchronous to asynchronous.).
科研通智能强力驱动
Strongly Powered by AbleSci AI