清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

CasSampling: Exploring Efficient Cascade Graph Learning for Popularity Prediction

计算机科学 图形 人气 特征学习 数据挖掘 利用 人工智能 注意力网络 计算 级联 理论计算机科学 机器学习 算法 心理学 社会心理学 化学 色谱法 计算机安全
作者
Guixiang Cheng,Yan Ping Xin,Shengxiang Gao,Guangyi Xu,Xianghua Miao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 70-86
标识
DOI:10.1007/978-3-031-43418-1_5
摘要

Predicting the growth size of an information cascade is one of the primary challenges in understanding the diffusion of information. Recent efforts focus on utilizing graph neural networks to capture graph structure. However, there is considerable variance in the information cascade size (from few to million). From the perspective of efficiency and performance, the method of modeling each node is inappropriate for graph neural networks. In this paper, we propose a novel deep learning framework for popularity prediction called CasSampling. Firstly, we exploit a heuristic algorithm to sample the critical part of cascade graph. For the loss of structure information due to sampling, we keep outdegree of sampled node in the global graph as part of the node feature into the graph attention networks. For the loss of temporal information due to sampling, we utilize the time series to learn the global propagation time flow. Then, we design an attention aggregator for node-level representation to better integrate local-level propagation into the global-level time flow. Experiments conducted on two benchmark datasets demonstrate that our method significantly outperforms the state-of-the-art methods for popularity prediction. Additionally, the computation cost is much less than the baselines. Code and (public) datasets are available at https://github.com/Gration-Cheng/CasSampling .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fufufu123完成签到 ,获得积分10
4秒前
结实的泽洋完成签到,获得积分10
7秒前
rockyshi完成签到 ,获得积分10
13秒前
害羞的裘完成签到 ,获得积分10
18秒前
gsji完成签到,获得积分10
30秒前
40秒前
十一完成签到,获得积分10
57秒前
wlscj应助科研通管家采纳,获得20
58秒前
负责以山完成签到 ,获得积分10
1分钟前
小糊涂仙儿完成签到 ,获得积分10
1分钟前
1分钟前
啪嗒大白球完成签到,获得积分10
1分钟前
Temperature完成签到,获得积分10
1分钟前
文献蚂蚁完成签到,获得积分10
1分钟前
CGBIO完成签到,获得积分10
1分钟前
真的OK完成签到,获得积分10
1分钟前
朝夕之晖完成签到,获得积分10
1分钟前
Syan完成签到,获得积分10
1分钟前
qq完成签到,获得积分10
1分钟前
yzz完成签到,获得积分10
1分钟前
BowieHuang完成签到,获得积分10
1分钟前
runtang完成签到,获得积分10
1分钟前
王jyk完成签到,获得积分10
1分钟前
cityhunter7777完成签到,获得积分10
1分钟前
喜喜完成签到,获得积分10
1分钟前
prrrratt完成签到,获得积分10
1分钟前
zwzw完成签到,获得积分10
1分钟前
洋芋饭饭完成签到,获得积分10
1分钟前
呵呵哒完成签到,获得积分10
1分钟前
BMG完成签到,获得积分10
1分钟前
清水完成签到,获得积分10
1分钟前
张浩林完成签到,获得积分10
1分钟前
美满惜寒完成签到,获得积分10
1分钟前
ys1008完成签到,获得积分10
1分钟前
成就小蜜蜂完成签到 ,获得积分10
1分钟前
1分钟前
愤怒的念蕾完成签到,获得积分10
1分钟前
科研啄木鸟完成签到 ,获得积分10
2分钟前
聪明初彤完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5368280
求助须知:如何正确求助?哪些是违规求助? 4496188
关于积分的说明 13996744
捐赠科研通 4401334
什么是DOI,文献DOI怎么找? 2417793
邀请新用户注册赠送积分活动 1410511
关于科研通互助平台的介绍 1386228