Joint Self-Training and Rebalanced Consistency Learning for Semi-Supervised Change Detection

标记数据 计算机科学 人工智能 一致性(知识库) 加权 稳健性(进化) 接头(建筑物) 模式识别(心理学) 监督学习 半监督学习 无监督学习 限制 训练集 机器学习 人工神经网络 医学 机械工程 基因 放射科 工程类 生物化学 建筑工程 化学
作者
Xueting Zhang,Xin Huang,Jiayi Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:12
标识
DOI:10.1109/tgrs.2023.3314452
摘要

Change detection (CD) is an important Earth observation task that can monitor change areas at two times from the view of space. However, fully-supervised CD has a heavy dependence on numerous manually-labeled data, limiting their applications in practice. Beyond the fully-supervised setting, semi-supervised change detection (SSCD), which uses a few labeled data to guide the unsupervised learning of dominant unlabeled data, has attracted increasing attention for its significant advantage in alleviating the demand for annotations. To this end, in this paper we propose a joint self-training and rebalanced consistency learning (ST-RCL) framework for SSCD, which consists of a basic supervised branch for the labeled data and a novel unsupervised branch for the unlabeled data. To make full use of the unlabeled data, the unsupervised branch generates pseudo-labels from weakly-augmented unlabeled remote sensing image (RSI) pairs to supervise the CD of two strongly-augmented counterparts, including an unrotated version and a rotated version. On one hand, the unrotated unlabeled RSI pairs are pseudo-supervised with the pseudo-labels by confidence-based self-training. On the other hand, to further enhance model robustness to rotation non-equivariance and imbalanced distribution, the predictions of rotated unlabeled RSI pairs are aligned to the pseudo-labels by a well-designed rebalanced consistency learning strategy based on uncertainty-based class weighting. Extensive experiments are performed on four widely-used CD datasets, and the proposed ST-RCL yields new state-of-the-art results on all these datasets in comparison with some other SSCD methods, demonstrating its effectiveness and generalization. Our code will be available at https://github.com/zxt9/STRCL-SSCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
情怀应助shirleeyeahe采纳,获得10
刚刚
1秒前
元元应助xzy采纳,获得20
1秒前
泥花完成签到,获得积分10
1秒前
247793325完成签到,获得积分20
1秒前
眼睛大的冰岚完成签到,获得积分10
1秒前
YY完成签到 ,获得积分10
1秒前
2秒前
雨天慢行完成签到,获得积分10
2秒前
韦威风发布了新的文献求助10
2秒前
科目三应助深情的不评采纳,获得10
2秒前
飞快的梦易完成签到,获得积分10
3秒前
Akim应助1b采纳,获得10
3秒前
末岛完成签到,获得积分10
3秒前
sweetbearm应助benben采纳,获得10
3秒前
3秒前
4秒前
科研通AI5应助今今采纳,获得10
4秒前
通~发布了新的文献求助10
4秒前
YY完成签到,获得积分10
4秒前
首席医官完成签到,获得积分10
5秒前
坚定迎天完成签到,获得积分10
5秒前
Zzzoey发布了新的文献求助10
6秒前
搜集达人应助小罗飞飞飞采纳,获得10
6秒前
詹卫卫完成签到 ,获得积分10
6秒前
6秒前
宇_发布了新的文献求助20
6秒前
7秒前
esdeath发布了新的文献求助10
7秒前
云轩完成签到,获得积分10
7秒前
7秒前
7秒前
自然乐松发布了新的文献求助10
7秒前
yesir完成签到,获得积分10
8秒前
普雅花的等待完成签到,获得积分10
8秒前
想人陪的以云完成签到,获得积分10
9秒前
科研通AI5应助德德采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794