Joint Self-Training and Rebalanced Consistency Learning for Semi-Supervised Change Detection

标记数据 计算机科学 人工智能 一致性(知识库) 加权 稳健性(进化) 接头(建筑物) 模式识别(心理学) 监督学习 半监督学习 无监督学习 限制 训练集 机器学习 人工神经网络 医学 机械工程 基因 放射科 工程类 生物化学 建筑工程 化学
作者
Xueting Zhang,Xin Huang,Jiayi Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:12
标识
DOI:10.1109/tgrs.2023.3314452
摘要

Change detection (CD) is an important Earth observation task that can monitor change areas at two times from the view of space. However, fully-supervised CD has a heavy dependence on numerous manually-labeled data, limiting their applications in practice. Beyond the fully-supervised setting, semi-supervised change detection (SSCD), which uses a few labeled data to guide the unsupervised learning of dominant unlabeled data, has attracted increasing attention for its significant advantage in alleviating the demand for annotations. To this end, in this paper we propose a joint self-training and rebalanced consistency learning (ST-RCL) framework for SSCD, which consists of a basic supervised branch for the labeled data and a novel unsupervised branch for the unlabeled data. To make full use of the unlabeled data, the unsupervised branch generates pseudo-labels from weakly-augmented unlabeled remote sensing image (RSI) pairs to supervise the CD of two strongly-augmented counterparts, including an unrotated version and a rotated version. On one hand, the unrotated unlabeled RSI pairs are pseudo-supervised with the pseudo-labels by confidence-based self-training. On the other hand, to further enhance model robustness to rotation non-equivariance and imbalanced distribution, the predictions of rotated unlabeled RSI pairs are aligned to the pseudo-labels by a well-designed rebalanced consistency learning strategy based on uncertainty-based class weighting. Extensive experiments are performed on four widely-used CD datasets, and the proposed ST-RCL yields new state-of-the-art results on all these datasets in comparison with some other SSCD methods, demonstrating its effectiveness and generalization. Our code will be available at https://github.com/zxt9/STRCL-SSCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mit发布了新的文献求助50
刚刚
1秒前
烟花应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
yx应助sailingluwl采纳,获得30
1秒前
Endlessway应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
薛定谔完成签到,获得积分10
2秒前
2秒前
乐乐应助陶醉觅夏采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
fifteen应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
雨季发布了新的文献求助10
2秒前
morena应助科研通管家采纳,获得20
2秒前
2秒前
所所应助科研通管家采纳,获得10
3秒前
球球发布了新的文献求助10
3秒前
FireNow完成签到 ,获得积分10
5秒前
yudabaoer完成签到,获得积分10
5秒前
aa发布了新的文献求助30
5秒前
6秒前
合适的帆布鞋完成签到 ,获得积分10
6秒前
简单发布了新的文献求助10
6秒前
ss25发布了新的文献求助30
6秒前
跳跳虎完成签到 ,获得积分10
7秒前
江江江江发布了新的文献求助10
8秒前
zgd发布了新的文献求助30
11秒前
天天快乐应助jj采纳,获得10
11秒前
12秒前
刘炜发布了新的文献求助10
12秒前
12秒前
高高的无敌完成签到,获得积分20
13秒前
科研通AI2S应助毛毛采纳,获得10
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229089
求助须知:如何正确求助?哪些是违规求助? 2876882
关于积分的说明 8196780
捐赠科研通 2544248
什么是DOI,文献DOI怎么找? 1374200
科研通“疑难数据库(出版商)”最低求助积分说明 646906
邀请新用户注册赠送积分活动 621693