生物
棉蚜
人口
RNA沉默
RNA干扰
基因敲除
蚜虫
基因表达
微生物学
植物
核糖核酸
基因
蚜虫科
遗传学
同翅目
人口学
社会学
有害生物分析
作者
G. S. Uma,Manjesh Saakre,Jaswant Singh,Vinay Kalia
标识
DOI:10.1007/s10142-023-01233-7
摘要
The importance of gut sucrase in maintaining osmotic equilibrium and utilizing phloem contents as a carbon source has been widely investigated and proven in sap-sucking insects. In the present study, silencing of Aphis gossypii sucrase1 (Agsuc1) was carried out by double-stranded RNA (dsRNA), which would be lethal to it due to disruption of osmotic balance. The dsRNA corresponding to Agsuc1 was synthesized by two methods, i.e., in vitro synthesis using T7/SP6 RNA polymerase and in vivo synthesis by bacterial expression, i.e., Escherichia coli strain HT115 transformed with the L4440 vector system. Oral delivery of double-stranded Agsuc1 synthesized in vitro (dsAgsuc1) and in vivo (HT115Agsuc1) induced around 50% mortality in nymphs of A. gossypii. Moreover, the number of offspring produced by the survived aphids decreased by 39–43%. Parthenogenetic reproduction of the aphids is the critical factor for their fast population build-up, leading to yield losses of economic significance. Thus, the present study demonstrated that the silencing of the Agsuc1 gene reduced the aphid population by killing it and inhibited the population buildup by reducing the number of offspring produced by the survived aphids, likely to result in a significant reduction in crop damage. The production of dsRNA by bacterial expression is a cost-effective method. It has the potential to be used as a biopesticide. The sucrase gene is an excellent putative target gene for RNAi against A. gossypii. It could be used to develop a transgenic plant that produces dsAgsuc1 to keep A. gossypii populations below the economic threshold level.
科研通智能强力驱动
Strongly Powered by AbleSci AI