Winter wheat yield prediction using integrated Landsat 8 and Sentinel-2 vegetation index time-series data and machine learning algorithms

归一化差异植被指数 时间序列 随机森林 支持向量机 机器学习 植被(病理学) 系列(地层学) 算法 产量(工程) 作物产量 预测建模 遥感 叶面积指数 计算机科学 农学 地理 医学 古生物学 材料科学 病理 冶金 生物
作者
Haiyang Zhang,Yao Zhang,Kaidi Liu,Lan Shu,Tian Gao,Minzan Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108250-108250
标识
DOI:10.1016/j.compag.2023.108250
摘要

Timely and accurate forecasting of winter wheat yield is important to crop management, food security, and sustainable agricultural development. Unfortunately, the process of predicting winter wheat yield using satellite time series data often fails to capture complete and critical information about the crop growth process, which can restrict the accuracy of crop yield predictions. To overcome this challenge, it is necessary to increase the frequency of monitoring crop growth dynamics, identify suitable vegetation index (VI), and determine the optimal prediction model for time-series remote sensing data. In this study, we propose proposes a novel method for predicting winter wheat yield using integrated Landsat 8 (L8) and Sentinel-2 (S2) vegetation index time-series data and machine learning algorithms. Firstly, the integrated L8 and S2 dataset was obtained through the steps of cloud masking, re-sampling, re-projection, BRDF correction, and band adjustment. Then, the optimal VI was determined based on the association between the growth characteristics of winter wheat and the time-series characteristic curves of each VI. Subsequently, we employed Bayesian optimized CatBoost (BO-CatBoost) regression model to predict winter wheat yield, and compared this method with three other data-driven methods, including least absolute shrinkage and selection operator (LASSO), support vector regression (SVM), and random forest (RF). Our results showed that the winter wheat yield prediction accuracies reached the best performance using integrated Landsat 8 and Sentinel-2 WDRVI (Wide Dynamic Range Vegetation Index) time-series data and BO-CatBoost model. The R2 values were 0.70, 0.63, and 0.68, and RMSE values were 0.62, 0.73, and 0.62 t/ha for the years 2019 to 2021, respectively. In addition, acceptable accuracy was obtained for yield prediction in 2021 based on the model trained with historical data from 2019 and 2020. Moreover, this study demonstrated the result that winter wheat yield could be predicted about 40 days earlier using the proposed method. Finally, results showed that the harmonized data improved the yield estimation accuracies by a factor of 1.52, 1.29, and 1.13 compared with single S2 dataset for years 2019–2021. Various experiments demonstrated that the proposed method could effectively estimate and predict winter wheat yield data with good accuracy and robustness. This study provides technical support for improving the accuracy of winter wheat yield prediction and has the potential to be extended to yield estimation for other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丰盛的煎饼应助小白采纳,获得10
刚刚
刚刚
所所应助Edison采纳,获得10
1秒前
1秒前
1秒前
lwbgm发布了新的文献求助10
2秒前
DAN完成签到 ,获得积分10
2秒前
2秒前
奈何完成签到,获得积分10
3秒前
希望天下0贩的0应助Ww采纳,获得10
3秒前
xiaoliuyaouli完成签到,获得积分10
3秒前
帅气翠霜完成签到,获得积分10
3秒前
积极孤菱完成签到,获得积分10
4秒前
虚心的芹菜完成签到,获得积分10
4秒前
lllllll完成签到,获得积分10
4秒前
洛洛发布了新的文献求助20
4秒前
dd36完成签到,获得积分10
4秒前
lanxinyue应助爹爹采纳,获得10
4秒前
ghostR完成签到,获得积分10
4秒前
这玩意长头发啦完成签到,获得积分10
4秒前
luka发布了新的文献求助10
4秒前
4秒前
ytzhang0587完成签到,获得积分10
5秒前
Majician完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
summer发布了新的文献求助10
6秒前
7秒前
豆子发布了新的文献求助10
7秒前
允胖胖完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
作文27分完成签到,获得积分10
10秒前
张小小完成签到,获得积分10
11秒前
Hsyin关注了科研通微信公众号
11秒前
高大大雁发布了新的文献求助10
11秒前
lwbgm完成签到,获得积分10
11秒前
高贵花瓣应助几又采纳,获得10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151290
求助须知:如何正确求助?哪些是违规求助? 2802726
关于积分的说明 7850119
捐赠科研通 2460164
什么是DOI,文献DOI怎么找? 1309586
科研通“疑难数据库(出版商)”最低求助积分说明 628975
版权声明 601760