Winter wheat yield prediction using integrated Landsat 8 and Sentinel-2 vegetation index time-series data and machine learning algorithms

归一化差异植被指数 时间序列 随机森林 支持向量机 机器学习 植被(病理学) 系列(地层学) 算法 产量(工程) 作物产量 预测建模 遥感 叶面积指数 计算机科学 农学 地理 生物 医学 病理 古生物学 冶金 材料科学
作者
Haiyang Zhang,Yao Zhang,Kaidi Liu,Lan Shu,Tinyao Gao,Minzan Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108250-108250 被引量:17
标识
DOI:10.1016/j.compag.2023.108250
摘要

Timely and accurate forecasting of winter wheat yield is important to crop management, food security, and sustainable agricultural development. Unfortunately, the process of predicting winter wheat yield using satellite time series data often fails to capture complete and critical information about the crop growth process, which can restrict the accuracy of crop yield predictions. To overcome this challenge, it is necessary to increase the frequency of monitoring crop growth dynamics, identify suitable vegetation index (VI), and determine the optimal prediction model for time-series remote sensing data. In this study, we propose proposes a novel method for predicting winter wheat yield using integrated Landsat 8 (L8) and Sentinel-2 (S2) vegetation index time-series data and machine learning algorithms. Firstly, the integrated L8 and S2 dataset was obtained through the steps of cloud masking, re-sampling, re-projection, BRDF correction, and band adjustment. Then, the optimal VI was determined based on the association between the growth characteristics of winter wheat and the time-series characteristic curves of each VI. Subsequently, we employed Bayesian optimized CatBoost (BO-CatBoost) regression model to predict winter wheat yield, and compared this method with three other data-driven methods, including least absolute shrinkage and selection operator (LASSO), support vector regression (SVM), and random forest (RF). Our results showed that the winter wheat yield prediction accuracies reached the best performance using integrated Landsat 8 and Sentinel-2 WDRVI (Wide Dynamic Range Vegetation Index) time-series data and BO-CatBoost model. The R2 values were 0.70, 0.63, and 0.68, and RMSE values were 0.62, 0.73, and 0.62 t/ha for the years 2019 to 2021, respectively. In addition, acceptable accuracy was obtained for yield prediction in 2021 based on the model trained with historical data from 2019 and 2020. Moreover, this study demonstrated the result that winter wheat yield could be predicted about 40 days earlier using the proposed method. Finally, results showed that the harmonized data improved the yield estimation accuracies by a factor of 1.52, 1.29, and 1.13 compared with single S2 dataset for years 2019–2021. Various experiments demonstrated that the proposed method could effectively estimate and predict winter wheat yield data with good accuracy and robustness. This study provides technical support for improving the accuracy of winter wheat yield prediction and has the potential to be extended to yield estimation for other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿冷完成签到,获得积分10
刚刚
木勿忘完成签到,获得积分10
刚刚
新野完成签到,获得积分10
刚刚
1秒前
orixero应助敬老院N号采纳,获得40
1秒前
李某完成签到 ,获得积分10
1秒前
乐鱼完成签到,获得积分10
2秒前
科研通AI5应助phenory采纳,获得30
4秒前
DezhaoWang完成签到,获得积分10
4秒前
加布完成签到 ,获得积分10
5秒前
兔先生完成签到,获得积分10
5秒前
迷人秋烟应助马騳骉采纳,获得200
5秒前
Epiphany完成签到,获得积分10
6秒前
专注鸡完成签到,获得积分10
6秒前
6秒前
6秒前
笨本呦完成签到 ,获得积分10
7秒前
好好学习完成签到,获得积分10
7秒前
妙奇完成签到,获得积分10
8秒前
orixero应助GD88采纳,获得10
9秒前
10秒前
10秒前
勤恳的书文完成签到 ,获得积分10
11秒前
alu发布了新的文献求助10
11秒前
李巧儿发布了新的文献求助10
12秒前
吴五五完成签到,获得积分10
13秒前
顷梦完成签到,获得积分10
13秒前
想把太阳揣兜里完成签到,获得积分10
13秒前
生而追梦不止完成签到,获得积分10
14秒前
已知中的未知完成签到 ,获得积分10
14秒前
嗨翻的冰激凌完成签到 ,获得积分10
14秒前
xzyin完成签到,获得积分10
15秒前
DaSheng完成签到,获得积分10
16秒前
尹山蝶完成签到,获得积分10
17秒前
phenory发布了新的文献求助30
17秒前
炙热的宛完成签到,获得积分10
17秒前
xjyyy完成签到 ,获得积分10
18秒前
英俊亦巧完成签到,获得积分10
18秒前
一朵巴巴完成签到,获得积分10
19秒前
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3742459
求助须知:如何正确求助?哪些是违规求助? 3285014
关于积分的说明 10042803
捐赠科研通 3001641
什么是DOI,文献DOI怎么找? 1647494
邀请新用户注册赠送积分活动 784239
科研通“疑难数据库(出版商)”最低求助积分说明 750676