Winter wheat yield prediction using integrated Landsat 8 and Sentinel-2 vegetation index time-series data and machine learning algorithms

归一化差异植被指数 时间序列 随机森林 支持向量机 机器学习 植被(病理学) 系列(地层学) 算法 产量(工程) 作物产量 预测建模 遥感 叶面积指数 计算机科学 农学 地理 生物 医学 病理 古生物学 冶金 材料科学
作者
Haiyang Zhang,Yao Zhang,Kaidi Liu,Lan Shu,Tinyao Gao,Minzan Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108250-108250 被引量:17
标识
DOI:10.1016/j.compag.2023.108250
摘要

Timely and accurate forecasting of winter wheat yield is important to crop management, food security, and sustainable agricultural development. Unfortunately, the process of predicting winter wheat yield using satellite time series data often fails to capture complete and critical information about the crop growth process, which can restrict the accuracy of crop yield predictions. To overcome this challenge, it is necessary to increase the frequency of monitoring crop growth dynamics, identify suitable vegetation index (VI), and determine the optimal prediction model for time-series remote sensing data. In this study, we propose proposes a novel method for predicting winter wheat yield using integrated Landsat 8 (L8) and Sentinel-2 (S2) vegetation index time-series data and machine learning algorithms. Firstly, the integrated L8 and S2 dataset was obtained through the steps of cloud masking, re-sampling, re-projection, BRDF correction, and band adjustment. Then, the optimal VI was determined based on the association between the growth characteristics of winter wheat and the time-series characteristic curves of each VI. Subsequently, we employed Bayesian optimized CatBoost (BO-CatBoost) regression model to predict winter wheat yield, and compared this method with three other data-driven methods, including least absolute shrinkage and selection operator (LASSO), support vector regression (SVM), and random forest (RF). Our results showed that the winter wheat yield prediction accuracies reached the best performance using integrated Landsat 8 and Sentinel-2 WDRVI (Wide Dynamic Range Vegetation Index) time-series data and BO-CatBoost model. The R2 values were 0.70, 0.63, and 0.68, and RMSE values were 0.62, 0.73, and 0.62 t/ha for the years 2019 to 2021, respectively. In addition, acceptable accuracy was obtained for yield prediction in 2021 based on the model trained with historical data from 2019 and 2020. Moreover, this study demonstrated the result that winter wheat yield could be predicted about 40 days earlier using the proposed method. Finally, results showed that the harmonized data improved the yield estimation accuracies by a factor of 1.52, 1.29, and 1.13 compared with single S2 dataset for years 2019–2021. Various experiments demonstrated that the proposed method could effectively estimate and predict winter wheat yield data with good accuracy and robustness. This study provides technical support for improving the accuracy of winter wheat yield prediction and has the potential to be extended to yield estimation for other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
玩命的绿草完成签到,获得积分20
2秒前
美丽的若之完成签到,获得积分20
2秒前
2秒前
3秒前
无花果应助朴素念波采纳,获得10
3秒前
小鱼儿发布了新的文献求助10
5秒前
刘桔完成签到,获得积分10
7秒前
黑桃3发布了新的文献求助10
8秒前
科研吧完成签到,获得积分10
8秒前
喵喵7完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
传奇3应助洋葱Qoo采纳,获得10
10秒前
11秒前
11秒前
NexusExplorer应助典雅的俊驰采纳,获得10
12秒前
12秒前
英姑应助开心超人采纳,获得10
12秒前
我的名字叫小琨完成签到,获得积分10
13秒前
专注的静白关注了科研通微信公众号
15秒前
帅冰冰冰完成签到,获得积分10
15秒前
bkagyin应助子凯采纳,获得10
15秒前
涂惠芳发布了新的文献求助10
16秒前
小辣里发布了新的文献求助10
17秒前
19秒前
科研通AI2S应助YU采纳,获得10
19秒前
帅冰冰冰发布了新的文献求助10
19秒前
Owen应助花花采纳,获得10
21秒前
28秒前
29秒前
面壁思过应助YU采纳,获得10
29秒前
iNk应助安菲尔德采纳,获得20
29秒前
siriuslee99发布了新的文献求助10
31秒前
32秒前
32秒前
夏雨完成签到,获得积分10
32秒前
一事无成的研一完成签到 ,获得积分10
34秒前
34秒前
wer完成签到 ,获得积分10
34秒前
Dann发布了新的文献求助10
35秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980027
求助须知:如何正确求助?哪些是违规求助? 3524131
关于积分的说明 11219994
捐赠科研通 3261576
什么是DOI,文献DOI怎么找? 1800726
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232