亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Winter wheat yield prediction using integrated Landsat 8 and Sentinel-2 vegetation index time-series data and machine learning algorithms

归一化差异植被指数 时间序列 随机森林 支持向量机 机器学习 植被(病理学) 系列(地层学) 算法 产量(工程) 作物产量 预测建模 遥感 叶面积指数 计算机科学 农学 地理 医学 古生物学 材料科学 病理 冶金 生物
作者
Haiyang Zhang,Yao Zhang,Kaidi Liu,Lan Shu,Tinyao Gao,Minzan Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108250-108250 被引量:17
标识
DOI:10.1016/j.compag.2023.108250
摘要

Timely and accurate forecasting of winter wheat yield is important to crop management, food security, and sustainable agricultural development. Unfortunately, the process of predicting winter wheat yield using satellite time series data often fails to capture complete and critical information about the crop growth process, which can restrict the accuracy of crop yield predictions. To overcome this challenge, it is necessary to increase the frequency of monitoring crop growth dynamics, identify suitable vegetation index (VI), and determine the optimal prediction model for time-series remote sensing data. In this study, we propose proposes a novel method for predicting winter wheat yield using integrated Landsat 8 (L8) and Sentinel-2 (S2) vegetation index time-series data and machine learning algorithms. Firstly, the integrated L8 and S2 dataset was obtained through the steps of cloud masking, re-sampling, re-projection, BRDF correction, and band adjustment. Then, the optimal VI was determined based on the association between the growth characteristics of winter wheat and the time-series characteristic curves of each VI. Subsequently, we employed Bayesian optimized CatBoost (BO-CatBoost) regression model to predict winter wheat yield, and compared this method with three other data-driven methods, including least absolute shrinkage and selection operator (LASSO), support vector regression (SVM), and random forest (RF). Our results showed that the winter wheat yield prediction accuracies reached the best performance using integrated Landsat 8 and Sentinel-2 WDRVI (Wide Dynamic Range Vegetation Index) time-series data and BO-CatBoost model. The R2 values were 0.70, 0.63, and 0.68, and RMSE values were 0.62, 0.73, and 0.62 t/ha for the years 2019 to 2021, respectively. In addition, acceptable accuracy was obtained for yield prediction in 2021 based on the model trained with historical data from 2019 and 2020. Moreover, this study demonstrated the result that winter wheat yield could be predicted about 40 days earlier using the proposed method. Finally, results showed that the harmonized data improved the yield estimation accuracies by a factor of 1.52, 1.29, and 1.13 compared with single S2 dataset for years 2019–2021. Various experiments demonstrated that the proposed method could effectively estimate and predict winter wheat yield data with good accuracy and robustness. This study provides technical support for improving the accuracy of winter wheat yield prediction and has the potential to be extended to yield estimation for other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Weiwei应助nnc采纳,获得50
9秒前
nnc完成签到,获得积分10
21秒前
22秒前
科研通AI2S应助wuran采纳,获得10
31秒前
顾矜应助科研通管家采纳,获得10
36秒前
CodeCraft应助科研通管家采纳,获得10
36秒前
NexusExplorer应助科研通管家采纳,获得10
36秒前
嘻嘻完成签到,获得积分10
1分钟前
Orange应助3927456843采纳,获得10
1分钟前
沉沉完成签到 ,获得积分0
1分钟前
2分钟前
小蘑菇应助LeezZZZ采纳,获得10
2分钟前
3927456843发布了新的文献求助10
2分钟前
2分钟前
LeezZZZ发布了新的文献求助10
2分钟前
冬去春来完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
3927456843完成签到,获得积分10
2分钟前
Lucas应助梦想家采纳,获得10
2分钟前
科研通AI6应助LeezZZZ采纳,获得10
2分钟前
迷茫的一代完成签到,获得积分10
3分钟前
3分钟前
梦想家发布了新的文献求助10
3分钟前
熊啊发布了新的文献求助10
4分钟前
4分钟前
Virtual应助科研通管家采纳,获得20
4分钟前
小周完成签到 ,获得积分10
4分钟前
5分钟前
梦想家完成签到,获得积分10
5分钟前
5分钟前
story发布了新的文献求助10
5分钟前
科研通AI2S应助story采纳,获得10
6分钟前
6分钟前
鉴定为学计算学的完成签到,获得积分10
6分钟前
熊啊发布了新的文献求助10
6分钟前
Kevin完成签到,获得积分10
7分钟前
sci2025opt完成签到 ,获得积分10
7分钟前
7分钟前
李健应助鸡蛋黄采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568949
求助须知:如何正确求助?哪些是违规求助? 3991291
关于积分的说明 12355635
捐赠科研通 3663460
什么是DOI,文献DOI怎么找? 2018921
邀请新用户注册赠送积分活动 1053332
科研通“疑难数据库(出版商)”最低求助积分说明 940877