Airborne SAR to Optical Image Registration Based on SAR Georeferencing and Deep Learning Approach

人工智能 合成孔径雷达 计算机科学 计算机视觉 图像配准 遥感 尺度不变特征变换 斑点图案 深度学习 像素 特征提取 图像(数学) 地理
作者
Alireza Liaghat,Mohammad Sadegh Helfroush,Javid Norouzi,Habibollah Danyali
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (21): 26446-26458 被引量:2
标识
DOI:10.1109/jsen.2023.3314608
摘要

Synthetic aperture radar (SAR) to optical image registration is a crucial pre-processing step in remote sensing applications. As a multisource image registration problem, it has several challenges due to radiometric and geometric differences and the presence of speckle noise in SAR images. This article presents a coarse to fine registration approach based on georeferencing and a deep learning framework to deal with these problems. The purpose of the method is to combine georeferencing information and a deep learning registration approach to reduce the outliers and increase the ratio of correct correspondences (ROCC). In the georeferencing approach, using the geometry of the SAR payload, latitude and longitude are assigned to each pixel of the SAR image. It is, therefore, possible to make an initial match between the SAR and a georeferenced optical image. It should be noted that due to the inherent errors of georeferencing, the image-based approach as a fine registration step is inevitable. In the training phase, the SAR-SIFT and scale-invariant feature transform (SIFT) algorithms are applied to pairs of registered SAR and optical images, respectively. If the detected keypoints in the two images are spatially matched, the descriptors are applied to a deep neural network (DNN). The network is trained to create a binary output for the corresponding and noncorresponding descriptors. In the validation stage, using the trained network and the georeferencing, the number of incorrect correspondences can be effectively reduced. The experimental results on several pairs of SAR and optical modalities indicate the effectiveness of the proposed algorithm in terms of registration accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
鱼e完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
song发布了新的文献求助10
5秒前
ding应助时尚初之采纳,获得10
5秒前
罗拉完成签到,获得积分10
5秒前
5秒前
6秒前
yun尘世完成签到,获得积分10
7秒前
7秒前
自信南霜完成签到,获得积分10
7秒前
tingting9完成签到,获得积分10
10秒前
10秒前
11秒前
卡布奇诺完成签到,获得积分10
11秒前
13223456发布了新的文献求助10
11秒前
青山落日秋月春风完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
小马甲应助动听的雅绿采纳,获得30
16秒前
1177发布了新的文献求助10
18秒前
18秒前
喜喵喵完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
11关注了科研通微信公众号
20秒前
123456完成签到,获得积分10
21秒前
时尚初之发布了新的文献求助10
21秒前
ddd完成签到,获得积分10
22秒前
喜喵喵发布了新的文献求助10
24秒前
无情的函发布了新的文献求助10
24秒前
麦乐迪完成签到 ,获得积分10
25秒前
SYLH应助云横秦岭家何在采纳,获得10
25秒前
bkagyin应助如意枫叶采纳,获得10
26秒前
科目三应助Quinna采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136