已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Airborne SAR to Optical Image Registration Based on SAR Georeferencing and Deep Learning Approach

人工智能 合成孔径雷达 计算机科学 计算机视觉 图像配准 遥感 尺度不变特征变换 斑点图案 深度学习 像素 特征提取 图像(数学) 地理
作者
Alireza Liaghat,Mohammad Sadegh Helfroush,Javid Norouzi,Habibollah Danyali
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (21): 26446-26458 被引量:2
标识
DOI:10.1109/jsen.2023.3314608
摘要

Synthetic aperture radar (SAR) to optical image registration is a crucial pre-processing step in remote sensing applications. As a multisource image registration problem, it has several challenges due to radiometric and geometric differences and the presence of speckle noise in SAR images. This article presents a coarse to fine registration approach based on georeferencing and a deep learning framework to deal with these problems. The purpose of the method is to combine georeferencing information and a deep learning registration approach to reduce the outliers and increase the ratio of correct correspondences (ROCC). In the georeferencing approach, using the geometry of the SAR payload, latitude and longitude are assigned to each pixel of the SAR image. It is, therefore, possible to make an initial match between the SAR and a georeferenced optical image. It should be noted that due to the inherent errors of georeferencing, the image-based approach as a fine registration step is inevitable. In the training phase, the SAR-SIFT and scale-invariant feature transform (SIFT) algorithms are applied to pairs of registered SAR and optical images, respectively. If the detected keypoints in the two images are spatially matched, the descriptors are applied to a deep neural network (DNN). The network is trained to create a binary output for the corresponding and noncorresponding descriptors. In the validation stage, using the trained network and the georeferencing, the number of incorrect correspondences can be effectively reduced. The experimental results on several pairs of SAR and optical modalities indicate the effectiveness of the proposed algorithm in terms of registration accuracy and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
XiaoliangXue发布了新的文献求助10
2秒前
13发布了新的文献求助10
2秒前
wy发布了新的文献求助10
4秒前
5秒前
hancahngxiao发布了新的文献求助10
9秒前
9秒前
10秒前
Akim应助科研通管家采纳,获得10
10秒前
语行完成签到 ,获得积分10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
VDC应助6666采纳,获得30
11秒前
www完成签到 ,获得积分10
11秒前
mmyhn发布了新的文献求助10
15秒前
田様应助13采纳,获得10
17秒前
xiuxiuzhang完成签到 ,获得积分10
18秒前
21秒前
FashionBoy应助肯瑞恩哭哭采纳,获得10
21秒前
冷傲山彤发布了新的文献求助10
22秒前
开朗的雪珊完成签到,获得积分10
22秒前
吴迪发布了新的文献求助10
23秒前
郑麻发布了新的文献求助10
25秒前
25秒前
26秒前
深情安青应助不淄采纳,获得10
26秒前
27秒前
梅狸猫不读博完成签到 ,获得积分10
28秒前
28秒前
默默襄完成签到 ,获得积分10
29秒前
情怀应助小虎牙采纳,获得10
29秒前
陆负剑发布了新的文献求助10
29秒前
Wilson发布了新的文献求助10
31秒前
13完成签到,获得积分10
32秒前
32秒前
33秒前
无情的rr完成签到 ,获得积分10
34秒前
35秒前
Hillson完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590251
求助须知:如何正确求助?哪些是违规求助? 4674657
关于积分的说明 14794952
捐赠科研通 4630846
什么是DOI,文献DOI怎么找? 2532648
邀请新用户注册赠送积分活动 1501221
关于科研通互助平台的介绍 1468576