Airborne SAR to Optical Image Registration Based on SAR Georeferencing and Deep Learning Approach

人工智能 合成孔径雷达 计算机科学 计算机视觉 图像配准 遥感 尺度不变特征变换 斑点图案 深度学习 像素 特征提取 图像(数学) 地理
作者
Alireza Liaghat,Mohammad Sadegh Helfroush,Javid Norouzi,Habibollah Danyali
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (21): 26446-26458 被引量:2
标识
DOI:10.1109/jsen.2023.3314608
摘要

Synthetic aperture radar (SAR) to optical image registration is a crucial pre-processing step in remote sensing applications. As a multisource image registration problem, it has several challenges due to radiometric and geometric differences and the presence of speckle noise in SAR images. This article presents a coarse to fine registration approach based on georeferencing and a deep learning framework to deal with these problems. The purpose of the method is to combine georeferencing information and a deep learning registration approach to reduce the outliers and increase the ratio of correct correspondences (ROCC). In the georeferencing approach, using the geometry of the SAR payload, latitude and longitude are assigned to each pixel of the SAR image. It is, therefore, possible to make an initial match between the SAR and a georeferenced optical image. It should be noted that due to the inherent errors of georeferencing, the image-based approach as a fine registration step is inevitable. In the training phase, the SAR-SIFT and scale-invariant feature transform (SIFT) algorithms are applied to pairs of registered SAR and optical images, respectively. If the detected keypoints in the two images are spatially matched, the descriptors are applied to a deep neural network (DNN). The network is trained to create a binary output for the corresponding and noncorresponding descriptors. In the validation stage, using the trained network and the georeferencing, the number of incorrect correspondences can be effectively reduced. The experimental results on several pairs of SAR and optical modalities indicate the effectiveness of the proposed algorithm in terms of registration accuracy and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linkman发布了新的文献求助10
刚刚
刚刚
1秒前
路由器完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
打打应助Solitude采纳,获得10
2秒前
muzi发布了新的文献求助10
3秒前
An发布了新的文献求助10
5秒前
5秒前
李健应助li采纳,获得10
6秒前
嗯哈完成签到 ,获得积分10
6秒前
8秒前
悦耳黑夜发布了新的文献求助10
8秒前
akan完成签到 ,获得积分10
9秒前
充电宝应助傻傻的凌寒采纳,获得10
9秒前
wuxunxun2015发布了新的文献求助10
10秒前
orixero应助SONG采纳,获得10
11秒前
PWF完成签到,获得积分10
12秒前
香蕉觅云应助高贵的迎蕾采纳,获得10
14秒前
14秒前
yaoyaoya完成签到 ,获得积分10
15秒前
开心平安完成签到,获得积分10
15秒前
李健的小迷弟应助Loststar采纳,获得10
15秒前
18秒前
脑洞疼应助涛哥采纳,获得10
19秒前
充电宝应助SONG采纳,获得10
19秒前
TayBob完成签到,获得积分10
21秒前
wuwuwuwu发布了新的文献求助10
21秒前
Zx_1993应助Snoopy采纳,获得50
22秒前
22秒前
22秒前
23秒前
baoxiaozhai完成签到 ,获得积分10
23秒前
23秒前
彭于晏应助闪闪穆采纳,获得10
23秒前
24秒前
lvzhigang发布了新的文献求助10
24秒前
一二发布了新的文献求助10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598772
求助须知:如何正确求助?哪些是违规求助? 4684180
关于积分的说明 14834106
捐赠科研通 4664702
什么是DOI,文献DOI怎么找? 2537384
邀请新用户注册赠送积分活动 1504909
关于科研通互助平台的介绍 1470606