已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Airborne SAR to Optical Image Registration Based on SAR Georeferencing and Deep Learning Approach

人工智能 合成孔径雷达 计算机科学 计算机视觉 图像配准 遥感 尺度不变特征变换 斑点图案 深度学习 像素 特征提取 图像(数学) 地理
作者
Alireza Liaghat,Mohammad Sadegh Helfroush,Javid Norouzi,Habibollah Danyali
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (21): 26446-26458 被引量:2
标识
DOI:10.1109/jsen.2023.3314608
摘要

Synthetic aperture radar (SAR) to optical image registration is a crucial pre-processing step in remote sensing applications. As a multisource image registration problem, it has several challenges due to radiometric and geometric differences and the presence of speckle noise in SAR images. This article presents a coarse to fine registration approach based on georeferencing and a deep learning framework to deal with these problems. The purpose of the method is to combine georeferencing information and a deep learning registration approach to reduce the outliers and increase the ratio of correct correspondences (ROCC). In the georeferencing approach, using the geometry of the SAR payload, latitude and longitude are assigned to each pixel of the SAR image. It is, therefore, possible to make an initial match between the SAR and a georeferenced optical image. It should be noted that due to the inherent errors of georeferencing, the image-based approach as a fine registration step is inevitable. In the training phase, the SAR-SIFT and scale-invariant feature transform (SIFT) algorithms are applied to pairs of registered SAR and optical images, respectively. If the detected keypoints in the two images are spatially matched, the descriptors are applied to a deep neural network (DNN). The network is trained to create a binary output for the corresponding and noncorresponding descriptors. In the validation stage, using the trained network and the georeferencing, the number of incorrect correspondences can be effectively reduced. The experimental results on several pairs of SAR and optical modalities indicate the effectiveness of the proposed algorithm in terms of registration accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
xjcy应助科研通管家采纳,获得10
3秒前
3秒前
熊仔一百应助科研通管家采纳,获得30
3秒前
HYCT完成签到 ,获得积分10
4秒前
青岚完成签到 ,获得积分10
4秒前
10秒前
123456发布了新的文献求助10
14秒前
李成恩完成签到 ,获得积分10
18秒前
77777完成签到 ,获得积分10
21秒前
youngyang完成签到 ,获得积分10
21秒前
24秒前
tzj完成签到,获得积分10
26秒前
28秒前
干净土豆完成签到,获得积分20
29秒前
干净土豆发布了新的文献求助10
31秒前
32秒前
34秒前
35秒前
asd应助xiaotianli采纳,获得100
35秒前
简让发布了新的文献求助10
35秒前
脑洞疼应助张可采纳,获得10
36秒前
37秒前
善学以致用应助干净土豆采纳,获得10
38秒前
风逝发布了新的文献求助10
40秒前
40秒前
44秒前
46秒前
a7662888完成签到,获得积分0
46秒前
47秒前
俊逸的大娘完成签到,获得积分10
47秒前
47秒前
张可发布了新的文献求助10
48秒前
Lucas应助yy采纳,获得10
48秒前
肖智议发布了新的文献求助10
50秒前
yiseeya发布了新的文献求助30
53秒前
FFFFFF完成签到 ,获得积分10
54秒前
风逝完成签到,获得积分20
54秒前
yar应助肖智议采纳,获得10
56秒前
57秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294383
求助须知:如何正确求助?哪些是违规求助? 2930307
关于积分的说明 8445823
捐赠科研通 2602591
什么是DOI,文献DOI怎么找? 1420618
科研通“疑难数据库(出版商)”最低求助积分说明 660559
邀请新用户注册赠送积分活动 643408