Airborne SAR to Optical Image Registration Based on SAR Georeferencing and Deep Learning Approach

人工智能 合成孔径雷达 计算机科学 计算机视觉 图像配准 遥感 尺度不变特征变换 斑点图案 深度学习 像素 特征提取 图像(数学) 地理
作者
Alireza Liaghat,Mohammad Sadegh Helfroush,Javid Norouzi,Habibollah Danyali
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (21): 26446-26458 被引量:2
标识
DOI:10.1109/jsen.2023.3314608
摘要

Synthetic aperture radar (SAR) to optical image registration is a crucial pre-processing step in remote sensing applications. As a multisource image registration problem, it has several challenges due to radiometric and geometric differences and the presence of speckle noise in SAR images. This article presents a coarse to fine registration approach based on georeferencing and a deep learning framework to deal with these problems. The purpose of the method is to combine georeferencing information and a deep learning registration approach to reduce the outliers and increase the ratio of correct correspondences (ROCC). In the georeferencing approach, using the geometry of the SAR payload, latitude and longitude are assigned to each pixel of the SAR image. It is, therefore, possible to make an initial match between the SAR and a georeferenced optical image. It should be noted that due to the inherent errors of georeferencing, the image-based approach as a fine registration step is inevitable. In the training phase, the SAR-SIFT and scale-invariant feature transform (SIFT) algorithms are applied to pairs of registered SAR and optical images, respectively. If the detected keypoints in the two images are spatially matched, the descriptors are applied to a deep neural network (DNN). The network is trained to create a binary output for the corresponding and noncorresponding descriptors. In the validation stage, using the trained network and the georeferencing, the number of incorrect correspondences can be effectively reduced. The experimental results on several pairs of SAR and optical modalities indicate the effectiveness of the proposed algorithm in terms of registration accuracy and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hooke发布了新的文献求助10
刚刚
刚刚
烟花应助Foalphaz采纳,获得10
刚刚
1秒前
12ss发布了新的文献求助30
1秒前
pluto应助fiu~采纳,获得10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
拉尼娜发布了新的文献求助10
2秒前
11111完成签到,获得积分10
2秒前
慕青应助黄燕采纳,获得10
2秒前
2秒前
安静店员完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
花已烬发布了新的文献求助20
3秒前
3秒前
3秒前
温暖的萤发布了新的文献求助10
4秒前
超甜大西瓜完成签到,获得积分10
4秒前
无花果应助郑泽航采纳,获得10
5秒前
5秒前
杨沛发布了新的文献求助10
5秒前
5秒前
zhangxq发布了新的文献求助10
5秒前
研友_VZG7GZ应助冰苏打采纳,获得10
6秒前
ZL发布了新的文献求助10
6秒前
liurencun发布了新的文献求助10
6秒前
6秒前
6秒前
electromx发布了新的文献求助20
7秒前
高贵焦发布了新的文献求助10
7秒前
充电宝应助SYS采纳,获得10
7秒前
昼夜本色发布了新的文献求助10
7秒前
目光之澄发布了新的文献求助10
7秒前
7秒前
xiliii发布了新的文献求助10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807