Airborne SAR to Optical Image Registration Based on SAR Georeferencing and Deep Learning Approach

人工智能 合成孔径雷达 计算机科学 计算机视觉 图像配准 遥感 尺度不变特征变换 斑点图案 深度学习 像素 特征提取 图像(数学) 地理
作者
Alireza Liaghat,Mohammad Sadegh Helfroush,Javid Norouzi,Habibollah Danyali
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (21): 26446-26458 被引量:2
标识
DOI:10.1109/jsen.2023.3314608
摘要

Synthetic aperture radar (SAR) to optical image registration is a crucial pre-processing step in remote sensing applications. As a multisource image registration problem, it has several challenges due to radiometric and geometric differences and the presence of speckle noise in SAR images. This article presents a coarse to fine registration approach based on georeferencing and a deep learning framework to deal with these problems. The purpose of the method is to combine georeferencing information and a deep learning registration approach to reduce the outliers and increase the ratio of correct correspondences (ROCC). In the georeferencing approach, using the geometry of the SAR payload, latitude and longitude are assigned to each pixel of the SAR image. It is, therefore, possible to make an initial match between the SAR and a georeferenced optical image. It should be noted that due to the inherent errors of georeferencing, the image-based approach as a fine registration step is inevitable. In the training phase, the SAR-SIFT and scale-invariant feature transform (SIFT) algorithms are applied to pairs of registered SAR and optical images, respectively. If the detected keypoints in the two images are spatially matched, the descriptors are applied to a deep neural network (DNN). The network is trained to create a binary output for the corresponding and noncorresponding descriptors. In the validation stage, using the trained network and the georeferencing, the number of incorrect correspondences can be effectively reduced. The experimental results on several pairs of SAR and optical modalities indicate the effectiveness of the proposed algorithm in terms of registration accuracy and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一马当先霄完成签到,获得积分10
1秒前
1秒前
yq关注了科研通微信公众号
1秒前
墨酒发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
cuiyanjie发布了新的文献求助10
2秒前
科研通AI2S应助songyuan采纳,获得10
2秒前
冷冷子发布了新的文献求助10
2秒前
小小申发布了新的文献求助10
2秒前
cy完成签到 ,获得积分10
2秒前
我爱学习发布了新的文献求助10
3秒前
阿雅完成签到 ,获得积分10
3秒前
3秒前
琳毓完成签到,获得积分10
3秒前
hehe_198发布了新的文献求助10
3秒前
4秒前
小蘑菇应助欧皇陈书宝采纳,获得10
4秒前
英俊的铭应助鳄鱼叁叁采纳,获得10
4秒前
Zoki完成签到,获得积分10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
李健应助nyzcc采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
5秒前
深情安青应助小胳膊细腿采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
情怀应助LNF采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
万能图书馆应助黄金回旋采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
彭于晏应助椰子采纳,获得10
5秒前
正己化人应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512432
求助须知:如何正确求助?哪些是违规求助? 4606873
关于积分的说明 14501499
捐赠科研通 4542174
什么是DOI,文献DOI怎么找? 2488952
邀请新用户注册赠送积分活动 1470999
关于科研通互助平台的介绍 1443152