Airborne SAR to Optical Image Registration Based on SAR Georeferencing and Deep Learning Approach

人工智能 合成孔径雷达 计算机科学 计算机视觉 图像配准 遥感 尺度不变特征变换 斑点图案 深度学习 像素 特征提取 图像(数学) 地理
作者
Alireza Liaghat,Mohammad Sadegh Helfroush,Javid Norouzi,Habibollah Danyali
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (21): 26446-26458 被引量:2
标识
DOI:10.1109/jsen.2023.3314608
摘要

Synthetic aperture radar (SAR) to optical image registration is a crucial pre-processing step in remote sensing applications. As a multisource image registration problem, it has several challenges due to radiometric and geometric differences and the presence of speckle noise in SAR images. This article presents a coarse to fine registration approach based on georeferencing and a deep learning framework to deal with these problems. The purpose of the method is to combine georeferencing information and a deep learning registration approach to reduce the outliers and increase the ratio of correct correspondences (ROCC). In the georeferencing approach, using the geometry of the SAR payload, latitude and longitude are assigned to each pixel of the SAR image. It is, therefore, possible to make an initial match between the SAR and a georeferenced optical image. It should be noted that due to the inherent errors of georeferencing, the image-based approach as a fine registration step is inevitable. In the training phase, the SAR-SIFT and scale-invariant feature transform (SIFT) algorithms are applied to pairs of registered SAR and optical images, respectively. If the detected keypoints in the two images are spatially matched, the descriptors are applied to a deep neural network (DNN). The network is trained to create a binary output for the corresponding and noncorresponding descriptors. In the validation stage, using the trained network and the georeferencing, the number of incorrect correspondences can be effectively reduced. The experimental results on several pairs of SAR and optical modalities indicate the effectiveness of the proposed algorithm in terms of registration accuracy and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助可爱香槟采纳,获得30
刚刚
罗dd发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
Tushar完成签到,获得积分10
2秒前
NexusExplorer应助日光下采纳,获得10
2秒前
spc68应助LIUDEHUA采纳,获得10
4秒前
Lucas应助LIUDEHUA采纳,获得10
4秒前
英吉利25发布了新的文献求助10
4秒前
4秒前
三胖完成签到,获得积分10
4秒前
Dr Niu发布了新的文献求助10
5秒前
研友_VZG7GZ应助雨滴音乐采纳,获得10
5秒前
5秒前
引子完成签到,获得积分10
6秒前
三胖发布了新的文献求助10
7秒前
yagen发布了新的文献求助10
7秒前
ww完成签到,获得积分10
7秒前
7秒前
afan应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
科目三应助科研通管家采纳,获得10
8秒前
蓝天应助科研通管家采纳,获得10
8秒前
Jeremy发布了新的文献求助10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
Mic应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
buno发布了新的文献求助10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
典雅涵瑶完成签到,获得积分10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582941
求助须知:如何正确求助?哪些是违规求助? 4666938
关于积分的说明 14764497
捐赠科研通 4608955
什么是DOI,文献DOI怎么找? 2528962
邀请新用户注册赠送积分活动 1498257
关于科研通互助平台的介绍 1466905