Prognostic analysis based on multi-features calculation and clinical information fusion of colorectal cancer whole slide pathological image

医学 结直肠癌 病态的 内科学 人工智能 生存分析 癌症 肿瘤科 放射科 计算机科学
作者
Chengfei Cai,Yingwu Zhou,Xiangxue Wang,Yiwen Jiao,Liang Li,Jun Xu
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3230297/v1
摘要

Abstract Background: Colorectal cancer (CRC) is a malignant tumor within digestive tract with both high incidence rate and and mortality. Early detection and intervention could improve patient clinical outcome and survival. Methods: This study computationally investigate a set of prognostic tissue and celluer features from diagnostic tissue slide. With the combination of clinical prognostic variable, the pathological image features could predict the prognosis in CRC patients.ur CRC prognosis prediction pipeline is sequentially consisted of three modules: (1) A DeepTissue Net to delineate outlines of different tissue types within the WSI of CRC for further ROI selection by pathologist; (2) Development of three-level quantitative image metrics related to tissue compositions, cell shape and hidden features from deep network; (3) Fusion of multi-level features to build a prognostic CRC model for predicting survival for CRC. Results: Experimental results suggest that each group of features has a certain relationship with the prognosis of patients in the independent test set. In the fusion features combination experiment, the accuracy rate of predicting patients' prognosis and survival status is 81.52%, and the AUC value is 0.77. Conclusion: This paper constructs a model that can predict postoperative survival of patients by using image features and clinical information.Some features were found to be associated with the prognosis and survival of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助哭泣青烟采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
阿胡发布了新的文献求助10
3秒前
chenyi发布了新的文献求助10
3秒前
kindong完成签到,获得积分10
4秒前
zoeyyy完成签到,获得积分10
5秒前
Lucas应助WANG采纳,获得10
5秒前
5秒前
5秒前
Xltox完成签到,获得积分10
6秒前
XylonYu完成签到,获得积分10
7秒前
华仔应助碧蓝碧凡采纳,获得10
8秒前
9秒前
超勍发布了新的文献求助10
13秒前
小马甲应助yuanshl1985采纳,获得10
13秒前
zhuxiaonian完成签到,获得积分10
16秒前
田様应助淘气科研采纳,获得10
16秒前
chenyi完成签到,获得积分10
17秒前
zyyyy完成签到,获得积分10
17秒前
奶黄包完成签到 ,获得积分10
17秒前
SYLH应助海阔天空采纳,获得10
17秒前
17秒前
机灵又蓝完成签到,获得积分10
18秒前
张土豆完成签到 ,获得积分10
18秒前
善学以致用应助小王采纳,获得10
18秒前
orang完成签到,获得积分10
19秒前
巧巧艾完成签到,获得积分10
19秒前
20秒前
邵洋完成签到,获得积分10
20秒前
sl发布了新的文献求助10
20秒前
21秒前
小迪迦奥特曼完成签到,获得积分10
21秒前
21秒前
cckk发布了新的文献求助10
22秒前
夏目由美完成签到 ,获得积分10
22秒前
Jasper应助哦哦哦采纳,获得10
23秒前
YYD完成签到,获得积分10
23秒前
超勍完成签到,获得积分10
23秒前
碧蓝碧凡发布了新的文献求助10
24秒前
Popeye应助鹤鸣采纳,获得30
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029