已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prognostic analysis based on multi-features calculation and clinical information fusion of colorectal cancer whole slide pathological image

医学 结直肠癌 病态的 内科学 人工智能 生存分析 癌症 肿瘤科 放射科 计算机科学
作者
Chengfei Cai,Yingwu Zhou,Xiangxue Wang,Yiwen Jiao,Liang Li,Jun Xu
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3230297/v1
摘要

Abstract Background: Colorectal cancer (CRC) is a malignant tumor within digestive tract with both high incidence rate and and mortality. Early detection and intervention could improve patient clinical outcome and survival. Methods: This study computationally investigate a set of prognostic tissue and celluer features from diagnostic tissue slide. With the combination of clinical prognostic variable, the pathological image features could predict the prognosis in CRC patients.ur CRC prognosis prediction pipeline is sequentially consisted of three modules: (1) A DeepTissue Net to delineate outlines of different tissue types within the WSI of CRC for further ROI selection by pathologist; (2) Development of three-level quantitative image metrics related to tissue compositions, cell shape and hidden features from deep network; (3) Fusion of multi-level features to build a prognostic CRC model for predicting survival for CRC. Results: Experimental results suggest that each group of features has a certain relationship with the prognosis of patients in the independent test set. In the fusion features combination experiment, the accuracy rate of predicting patients' prognosis and survival status is 81.52%, and the AUC value is 0.77. Conclusion: This paper constructs a model that can predict postoperative survival of patients by using image features and clinical information.Some features were found to be associated with the prognosis and survival of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lllllll完成签到,获得积分10
1秒前
chowder完成签到,获得积分10
1秒前
ohwhale完成签到 ,获得积分10
2秒前
麻薯发布了新的文献求助10
2秒前
5秒前
5秒前
6秒前
赘婿应助呜呼啦呼采纳,获得10
6秒前
cnspower应助呜呼啦呼采纳,获得10
6秒前
zhw应助呜呼啦呼采纳,获得10
7秒前
苏梗完成签到 ,获得积分10
7秒前
忧郁小鸽子完成签到,获得积分10
9秒前
魏凯源完成签到,获得积分10
10秒前
10秒前
Jasper应助ChemMa采纳,获得10
11秒前
11秒前
13秒前
充电宝应助等待的香魔采纳,获得10
13秒前
文承杰完成签到 ,获得积分10
14秒前
14秒前
AnyYuan完成签到 ,获得积分10
15秒前
16秒前
zhw应助勤恳冰淇淋采纳,获得10
17秒前
怂怂鼠完成签到,获得积分10
19秒前
ChemMa发布了新的文献求助10
22秒前
23秒前
等待的香魔完成签到,获得积分10
23秒前
炒米粉完成签到,获得积分10
24秒前
25秒前
25秒前
27秒前
胡子完成签到,获得积分10
28秒前
28秒前
28秒前
善学以致用应助o30采纳,获得10
30秒前
hgyu发布了新的文献求助30
32秒前
Linson完成签到,获得积分10
33秒前
江江江发布了新的文献求助10
33秒前
Pattis完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787864
求助须知:如何正确求助?哪些是违规求助? 5702085
关于积分的说明 15472939
捐赠科研通 4916097
什么是DOI,文献DOI怎么找? 2646134
邀请新用户注册赠送积分活动 1593827
关于科研通互助平台的介绍 1548158