Who politicized the COVID-19 pandemic on Twitter: cultural identity and Chinese prejudice in a virtual community

影响力营销 社会化媒体 政治 社会学 对话 中国 领域 责备 政治学 公共关系 社会心理学 心理学 业务 法学 沟通 营销 市场营销管理 关系营销
作者
Yanfang Wu
出处
期刊:Chinese Journal of Communication [Informa]
卷期号:17 (3): 288-307
标识
DOI:10.1080/17544750.2023.2283858
摘要

This research, using the cultural-identity-protective cognition theory and focusing on China as a case study, aims to identify influencers, track information dissemination processes, and recognize the patterns of information and emotional flows within Twitter conversations related to the politicization of the COVID-19 pandemic. 5.3 million Twitter posts were collected related to the coronavirus using keyword searches such as #Wuhan and #Chinesevirus. Out of these, 17,964 tweets were selected as a sample from the most commented tweets by top users. A qualitative textual analysis revealed that Twitter users' attitudes toward the coronavirus disease and governments' policies were highly politicized and polarized. Both influencers and general users had the capacity to steer Twitter conversations into the political realm, thus contributing to the politicization and polarization of discussions during the information flow. Notably, opinion leaders, especially among influencers, could politicize and polarize a conversation by initially indicating their political standing in the tweet. In general, Twitter users had the ability to make neutral and objective news information go viral if a large number of Twitter users continue the politicization and polarization processes. Group membership—specifically, political standing—and cultural identities played significant roles in perpetuating a vicious cycle of anger. This cycle amplified identity threats for Twitter users and prompted more prejudicial and polarized comments, especially when China, Chinese people, and the Chinese government were the subjects of blame in the Twitter community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hql发布了新的文献求助30
1秒前
跳跃若风发布了新的文献求助10
1秒前
白三烯完成签到,获得积分10
1秒前
1秒前
山晴发布了新的文献求助10
2秒前
guard发布了新的文献求助10
4秒前
吴1发布了新的文献求助100
4秒前
chen发布了新的文献求助10
5秒前
慕青应助包容的剑采纳,获得10
5秒前
vghvvjg完成签到,获得积分20
6秒前
Suppose发布了新的文献求助10
6秒前
小郭完成签到 ,获得积分10
7秒前
星辰大海应助中中采纳,获得10
7秒前
快乐战神没烦恼完成签到,获得积分10
9秒前
xl_c完成签到,获得积分10
9秒前
脑洞疼应助LFJ采纳,获得10
10秒前
山晴完成签到,获得积分10
10秒前
科研通AI5应助TOU采纳,获得10
11秒前
13秒前
LL完成签到,获得积分10
14秒前
香蕉觅云应助跳跃若风采纳,获得10
15秒前
顾矜应助跳跃若风采纳,获得10
15秒前
16秒前
17秒前
大力无声完成签到,获得积分20
18秒前
18秒前
可爱的函函应助李本来采纳,获得10
18秒前
天天快乐应助清澜庭采纳,获得10
18秒前
冬冬冬完成签到 ,获得积分20
19秒前
英俊的铭应助Manchester4607采纳,获得10
19秒前
灵巧高山应助Manchester4607采纳,获得10
19秒前
20秒前
21秒前
大力无声发布了新的文献求助10
21秒前
中中发布了新的文献求助10
22秒前
Mars发布了新的文献求助10
22秒前
whh发布了新的文献求助10
22秒前
22秒前
传奇3应助紫紫吃菠菜采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555160
求助须知:如何正确求助?哪些是违规求助? 3130863
关于积分的说明 9388950
捐赠科研通 2830329
什么是DOI,文献DOI怎么找? 1555932
邀请新用户注册赠送积分活动 726345
科研通“疑难数据库(出版商)”最低求助积分说明 715734