已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning k‐Space‐to‐Image Reconstruction Facilitates High Spatial Resolution and Scan Time Reduction in Diffusion‐Weighted Imaging Breast MRI

磁共振弥散成像 图像质量 有效扩散系数 核医学 医学 标准差 置信区间 数学 邦费罗尼校正 人工智能 图像分辨率 磁共振成像 算法 计算机科学 统计 放射科 图像(数学)
作者
Stephanie Sauer,Sara Aniki Christner,Anna‐Maria Lois,Piotr Woźnicki,Carolin Curtaz,Andreas Steven Kunz,Elisabeth Weiland,Thomas Benkert,Thorsten Alexander Bley,Bettina Baeßler,Jan‐Peter Grunz
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (3): 1190-1200 被引量:5
标识
DOI:10.1002/jmri.29139
摘要

Background For time‐consuming diffusion‐weighted imaging (DWI) of the breast, deep learning‐based imaging acceleration appears particularly promising. Purpose To investigate a combined k‐space‐to‐image reconstruction approach for scan time reduction and improved spatial resolution in breast DWI. Study Type Retrospective. Population 133 women (age 49.7 ± 12.1 years) underwent multiparametric breast MRI. Field Strength/Sequence 3.0T/T2 turbo spin echo, T1 3D gradient echo, DWI (800 and 1600 sec/mm 2 ). Assessment DWI data were retrospectively processed using deep learning‐based k‐space‐to‐image reconstruction (DL‐DWI) and an additional super‐resolution algorithm (SRDL‐DWI). In addition to signal‐to‐noise ratio and apparent diffusion coefficient (ADC) comparisons among standard, DL‐ and SRDL‐DWI, a range of quantitative similarity (e.g., structural similarity index [SSIM]) and error metrics (e.g., normalized root mean square error [NRMSE], symmetric mean absolute percent error [SMAPE], log accuracy error [LOGAC]) was calculated to analyze structural variations. Subjective image evaluation was performed independently by three radiologists on a seven‐point rating scale. Statistical Tests Friedman's rank‐based analysis of variance with Bonferroni‐corrected pairwise post‐hoc tests. P < 0.05 was considered significant. Results Both DL‐ and SRDL‐DWI allowed for a 39% reduction in simulated scan time over standard DWI (5 vs. 3 minutes). The highest image quality ratings were assigned to SRDL‐DWI with good interreader agreement (ICC 0.834; 95% confidence interval 0.818–0.848). Irrespective of b ‐value, both standard and DL‐DWI produced superior SNR compared to SRDL‐DWI. ADC values were slightly higher in SRDL‐DWI (+0.5%) and DL‐DWI (+3.4%) than in standard DWI. Structural similarity was excellent between DL‐/SRDL‐DWI and standard DWI for either b value (SSIM ≥ 0.86). Calculation of error metrics (NRMSE ≤ 0.05, SMAPE ≤ 0.02, and LOGAC ≤ 0.04) supported the assumption of low voxel‐wise error. Data Conclusion Deep learning‐based k‐space‐to‐image reconstruction reduces simulated scan time of breast DWI by 39% without influencing structural similarity. Additionally, super‐resolution interpolation allows for substantial improvement of subjective image quality. Evidence Level 4 Technical Efficacy Stage 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不喝奶茶完成签到 ,获得积分10
刚刚
完美世界应助lwl采纳,获得10
3秒前
chigga发布了新的文献求助10
3秒前
liuniuniu发布了新的文献求助10
4秒前
cwy完成签到,获得积分10
5秒前
酷波er应助桐嘉采纳,获得10
5秒前
fdwonder完成签到,获得积分10
6秒前
别当真完成签到 ,获得积分10
10秒前
wq完成签到 ,获得积分10
10秒前
NexusExplorer应助野猪空手道采纳,获得10
11秒前
猫哈哈完成签到,获得积分10
11秒前
77777完成签到 ,获得积分10
12秒前
000v000完成签到,获得积分10
12秒前
风中芷容完成签到 ,获得积分10
12秒前
星辰大海应助liuniuniu采纳,获得10
12秒前
LX有理想完成签到 ,获得积分10
13秒前
nihao完成签到,获得积分20
13秒前
13秒前
李健的小迷弟应助小林采纳,获得10
14秒前
科研通AI6.1应助群山采纳,获得10
15秒前
研友_R2D2完成签到,获得积分10
15秒前
4114完成签到,获得积分10
17秒前
小艾同学完成签到 ,获得积分20
19秒前
如意凝云发布了新的文献求助20
19秒前
20秒前
MiRoRo完成签到 ,获得积分10
20秒前
kai chen完成签到 ,获得积分0
21秒前
852应助liuniuniu采纳,获得10
22秒前
joe完成签到,获得积分10
22秒前
黑巧的融化完成签到 ,获得积分10
22秒前
miao发布了新的文献求助30
23秒前
23秒前
盐植物完成签到,获得积分10
24秒前
王木木完成签到 ,获得积分10
24秒前
康康完成签到 ,获得积分10
24秒前
三月完成签到,获得积分10
24秒前
少年锦时完成签到,获得积分10
27秒前
27秒前
彭于晏应助贾靖涵采纳,获得30
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771975
求助须知:如何正确求助?哪些是违规求助? 5594820
关于积分的说明 15428720
捐赠科研通 4905144
什么是DOI,文献DOI怎么找? 2639238
邀请新用户注册赠送积分活动 1587134
关于科研通互助平台的介绍 1542004