Deep Learning k‐Space‐to‐Image Reconstruction Facilitates High Spatial Resolution and Scan Time Reduction in Diffusion‐Weighted Imaging Breast MRI

磁共振弥散成像 图像质量 有效扩散系数 核医学 医学 标准差 置信区间 数学 邦费罗尼校正 人工智能 图像分辨率 磁共振成像 算法 计算机科学 统计 放射科 图像(数学)
作者
Stephanie Sauer,Sara Aniki Christner,Anna‐Maria Lois,Piotr Woźnicki,Carolin Curtaz,Andreas Steven Kunz,Elisabeth Weiland,Thomas Benkert,Thorsten Alexander Bley,Bettina Baeßler,Jan‐Peter Grunz
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (3): 1190-1200 被引量:5
标识
DOI:10.1002/jmri.29139
摘要

Background For time‐consuming diffusion‐weighted imaging (DWI) of the breast, deep learning‐based imaging acceleration appears particularly promising. Purpose To investigate a combined k‐space‐to‐image reconstruction approach for scan time reduction and improved spatial resolution in breast DWI. Study Type Retrospective. Population 133 women (age 49.7 ± 12.1 years) underwent multiparametric breast MRI. Field Strength/Sequence 3.0T/T2 turbo spin echo, T1 3D gradient echo, DWI (800 and 1600 sec/mm 2 ). Assessment DWI data were retrospectively processed using deep learning‐based k‐space‐to‐image reconstruction (DL‐DWI) and an additional super‐resolution algorithm (SRDL‐DWI). In addition to signal‐to‐noise ratio and apparent diffusion coefficient (ADC) comparisons among standard, DL‐ and SRDL‐DWI, a range of quantitative similarity (e.g., structural similarity index [SSIM]) and error metrics (e.g., normalized root mean square error [NRMSE], symmetric mean absolute percent error [SMAPE], log accuracy error [LOGAC]) was calculated to analyze structural variations. Subjective image evaluation was performed independently by three radiologists on a seven‐point rating scale. Statistical Tests Friedman's rank‐based analysis of variance with Bonferroni‐corrected pairwise post‐hoc tests. P < 0.05 was considered significant. Results Both DL‐ and SRDL‐DWI allowed for a 39% reduction in simulated scan time over standard DWI (5 vs. 3 minutes). The highest image quality ratings were assigned to SRDL‐DWI with good interreader agreement (ICC 0.834; 95% confidence interval 0.818–0.848). Irrespective of b ‐value, both standard and DL‐DWI produced superior SNR compared to SRDL‐DWI. ADC values were slightly higher in SRDL‐DWI (+0.5%) and DL‐DWI (+3.4%) than in standard DWI. Structural similarity was excellent between DL‐/SRDL‐DWI and standard DWI for either b value (SSIM ≥ 0.86). Calculation of error metrics (NRMSE ≤ 0.05, SMAPE ≤ 0.02, and LOGAC ≤ 0.04) supported the assumption of low voxel‐wise error. Data Conclusion Deep learning‐based k‐space‐to‐image reconstruction reduces simulated scan time of breast DWI by 39% without influencing structural similarity. Additionally, super‐resolution interpolation allows for substantial improvement of subjective image quality. Evidence Level 4 Technical Efficacy Stage 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫枫829发布了新的文献求助10
2秒前
2秒前
4秒前
Cloud发布了新的文献求助50
5秒前
哲欣完成签到,获得积分10
5秒前
852应助怡宝采纳,获得10
7秒前
bei完成签到,获得积分10
9秒前
所所应助马少洋采纳,获得10
9秒前
Wudifairy完成签到,获得积分10
10秒前
研究牲完成签到,获得积分10
11秒前
墨然然完成签到 ,获得积分10
16秒前
科研小白完成签到 ,获得积分10
17秒前
Orange应助沉静尔曼采纳,获得10
17秒前
英俊的铭应助爱听歌从蓉采纳,获得10
17秒前
17秒前
麻薯头头发布了新的文献求助10
18秒前
19秒前
20秒前
阔达凝天发布了新的文献求助10
21秒前
eric888应助科研通管家采纳,获得100
21秒前
浮游应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
李爱国应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
Hilda007应助科研通管家采纳,获得10
21秒前
22秒前
浮游应助科研通管家采纳,获得10
22秒前
22秒前
浮游应助科研通管家采纳,获得10
22秒前
如果天气好的话完成签到,获得积分10
22秒前
研究牲发布了新的文献求助10
22秒前
22秒前
Curry完成签到 ,获得积分10
22秒前
8R60d8应助拾肆采纳,获得10
23秒前
23秒前
24秒前
25秒前
马少洋发布了新的文献求助10
25秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296018
求助须知:如何正确求助?哪些是违规求助? 4445360
关于积分的说明 13836028
捐赠科研通 4330050
什么是DOI,文献DOI怎么找? 2376864
邀请新用户注册赠送积分活动 1372213
关于科研通互助平台的介绍 1337586