Deep Learning k‐Space‐to‐Image Reconstruction Facilitates High Spatial Resolution and Scan Time Reduction in Diffusion‐Weighted Imaging Breast MRI

磁共振弥散成像 图像质量 有效扩散系数 核医学 医学 标准差 置信区间 数学 邦费罗尼校正 人工智能 图像分辨率 磁共振成像 算法 计算机科学 统计 放射科 图像(数学)
作者
Stephanie Sauer,Sara Aniki Christner,Anna‐Maria Lois,Piotr Woźnicki,Carolin Curtaz,Andreas Steven Kunz,Elisabeth Weiland,Thomas Benkert,Thorsten Alexander Bley,Bettina Baeßler,Jan‐Peter Grunz
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (3): 1190-1200 被引量:5
标识
DOI:10.1002/jmri.29139
摘要

Background For time‐consuming diffusion‐weighted imaging (DWI) of the breast, deep learning‐based imaging acceleration appears particularly promising. Purpose To investigate a combined k‐space‐to‐image reconstruction approach for scan time reduction and improved spatial resolution in breast DWI. Study Type Retrospective. Population 133 women (age 49.7 ± 12.1 years) underwent multiparametric breast MRI. Field Strength/Sequence 3.0T/T2 turbo spin echo, T1 3D gradient echo, DWI (800 and 1600 sec/mm 2 ). Assessment DWI data were retrospectively processed using deep learning‐based k‐space‐to‐image reconstruction (DL‐DWI) and an additional super‐resolution algorithm (SRDL‐DWI). In addition to signal‐to‐noise ratio and apparent diffusion coefficient (ADC) comparisons among standard, DL‐ and SRDL‐DWI, a range of quantitative similarity (e.g., structural similarity index [SSIM]) and error metrics (e.g., normalized root mean square error [NRMSE], symmetric mean absolute percent error [SMAPE], log accuracy error [LOGAC]) was calculated to analyze structural variations. Subjective image evaluation was performed independently by three radiologists on a seven‐point rating scale. Statistical Tests Friedman's rank‐based analysis of variance with Bonferroni‐corrected pairwise post‐hoc tests. P < 0.05 was considered significant. Results Both DL‐ and SRDL‐DWI allowed for a 39% reduction in simulated scan time over standard DWI (5 vs. 3 minutes). The highest image quality ratings were assigned to SRDL‐DWI with good interreader agreement (ICC 0.834; 95% confidence interval 0.818–0.848). Irrespective of b ‐value, both standard and DL‐DWI produced superior SNR compared to SRDL‐DWI. ADC values were slightly higher in SRDL‐DWI (+0.5%) and DL‐DWI (+3.4%) than in standard DWI. Structural similarity was excellent between DL‐/SRDL‐DWI and standard DWI for either b value (SSIM ≥ 0.86). Calculation of error metrics (NRMSE ≤ 0.05, SMAPE ≤ 0.02, and LOGAC ≤ 0.04) supported the assumption of low voxel‐wise error. Data Conclusion Deep learning‐based k‐space‐to‐image reconstruction reduces simulated scan time of breast DWI by 39% without influencing structural similarity. Additionally, super‐resolution interpolation allows for substantial improvement of subjective image quality. Evidence Level 4 Technical Efficacy Stage 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
unaqvq发布了新的文献求助10
刚刚
ding应助paddi采纳,获得10
1秒前
紧张的不悔完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助xiuru采纳,获得10
4秒前
4秒前
xin完成签到,获得积分10
4秒前
在水一方应助小年小少采纳,获得10
4秒前
5秒前
pluto应助成就胡萝卜采纳,获得10
6秒前
6秒前
CipherSage应助潇洒闭月采纳,获得10
6秒前
7秒前
完犊子完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
储物间完成签到,获得积分10
9秒前
9秒前
10秒前
浮浮世世发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助30
11秒前
斯文败类应助unaqvq采纳,获得10
12秒前
12秒前
12秒前
甜蜜鹭洋发布了新的文献求助10
12秒前
12秒前
棠堂发布了新的文献求助10
12秒前
paddi发布了新的文献求助10
12秒前
13秒前
果冻橙完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
13秒前
14秒前
14秒前
童话金发布了新的文献求助10
14秒前
善学以致用应助lllll采纳,获得10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743323
求助须知:如何正确求助?哪些是违规求助? 5413456
关于积分的说明 15347310
捐赠科研通 4884139
什么是DOI,文献DOI怎么找? 2625595
邀请新用户注册赠送积分活动 1574486
关于科研通互助平台的介绍 1531380