清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning k‐Space‐to‐Image Reconstruction Facilitates High Spatial Resolution and Scan Time Reduction in Diffusion‐Weighted Imaging Breast MRI

磁共振弥散成像 图像质量 有效扩散系数 核医学 医学 标准差 置信区间 数学 邦费罗尼校正 人工智能 图像分辨率 磁共振成像 算法 计算机科学 统计 放射科 图像(数学)
作者
Stephanie Sauer,Sara Aniki Christner,Anna‐Maria Lois,Piotr Woźnicki,Carolin Curtaz,Andreas Steven Kunz,Elisabeth Weiland,Thomas Benkert,Thorsten Alexander Bley,Bettina Baeßler,Jan‐Peter Grunz
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (3): 1190-1200 被引量:5
标识
DOI:10.1002/jmri.29139
摘要

Background For time‐consuming diffusion‐weighted imaging (DWI) of the breast, deep learning‐based imaging acceleration appears particularly promising. Purpose To investigate a combined k‐space‐to‐image reconstruction approach for scan time reduction and improved spatial resolution in breast DWI. Study Type Retrospective. Population 133 women (age 49.7 ± 12.1 years) underwent multiparametric breast MRI. Field Strength/Sequence 3.0T/T2 turbo spin echo, T1 3D gradient echo, DWI (800 and 1600 sec/mm 2 ). Assessment DWI data were retrospectively processed using deep learning‐based k‐space‐to‐image reconstruction (DL‐DWI) and an additional super‐resolution algorithm (SRDL‐DWI). In addition to signal‐to‐noise ratio and apparent diffusion coefficient (ADC) comparisons among standard, DL‐ and SRDL‐DWI, a range of quantitative similarity (e.g., structural similarity index [SSIM]) and error metrics (e.g., normalized root mean square error [NRMSE], symmetric mean absolute percent error [SMAPE], log accuracy error [LOGAC]) was calculated to analyze structural variations. Subjective image evaluation was performed independently by three radiologists on a seven‐point rating scale. Statistical Tests Friedman's rank‐based analysis of variance with Bonferroni‐corrected pairwise post‐hoc tests. P < 0.05 was considered significant. Results Both DL‐ and SRDL‐DWI allowed for a 39% reduction in simulated scan time over standard DWI (5 vs. 3 minutes). The highest image quality ratings were assigned to SRDL‐DWI with good interreader agreement (ICC 0.834; 95% confidence interval 0.818–0.848). Irrespective of b ‐value, both standard and DL‐DWI produced superior SNR compared to SRDL‐DWI. ADC values were slightly higher in SRDL‐DWI (+0.5%) and DL‐DWI (+3.4%) than in standard DWI. Structural similarity was excellent between DL‐/SRDL‐DWI and standard DWI for either b value (SSIM ≥ 0.86). Calculation of error metrics (NRMSE ≤ 0.05, SMAPE ≤ 0.02, and LOGAC ≤ 0.04) supported the assumption of low voxel‐wise error. Data Conclusion Deep learning‐based k‐space‐to‐image reconstruction reduces simulated scan time of breast DWI by 39% without influencing structural similarity. Additionally, super‐resolution interpolation allows for substantial improvement of subjective image quality. Evidence Level 4 Technical Efficacy Stage 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TOUHOUU完成签到 ,获得积分10
2秒前
小宁完成签到 ,获得积分10
24秒前
科研通AI2S应助科研通管家采纳,获得30
26秒前
wuludie应助科研通管家采纳,获得10
26秒前
阿尼完成签到 ,获得积分10
27秒前
披着羊皮的狼完成签到 ,获得积分10
28秒前
yzz完成签到,获得积分10
36秒前
张浩林完成签到,获得积分10
37秒前
BMG完成签到,获得积分10
37秒前
guoyufan完成签到,获得积分10
37秒前
臣臣想睡觉完成签到,获得积分20
37秒前
真的OK完成签到,获得积分0
37秒前
tingting完成签到,获得积分10
38秒前
王jyk完成签到,获得积分10
38秒前
BowieHuang完成签到,获得积分0
38秒前
美满惜寒完成签到,获得积分10
39秒前
呵呵哒完成签到,获得积分10
39秒前
清水完成签到,获得积分10
39秒前
阳光完成签到,获得积分10
39秒前
cityhunter7777完成签到,获得积分10
39秒前
675完成签到,获得积分10
40秒前
啪嗒大白球完成签到,获得积分10
40秒前
qq完成签到,获得积分10
40秒前
大树完成签到,获得积分10
40秒前
Temperature完成签到,获得积分10
40秒前
Syan完成签到,获得积分10
41秒前
朝夕之晖完成签到,获得积分10
41秒前
CGBIO完成签到,获得积分10
41秒前
prrrratt完成签到,获得积分10
41秒前
ys1008完成签到,获得积分10
41秒前
41秒前
喜喜完成签到,获得积分10
42秒前
洋芋饭饭完成签到,获得积分10
42秒前
runtang完成签到,获得积分10
42秒前
zwzw完成签到,获得积分10
42秒前
42秒前
老孟完成签到,获得积分10
44秒前
成就小蜜蜂完成签到 ,获得积分10
45秒前
xl发布了新的文献求助10
48秒前
popo6150完成签到 ,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664649
求助须知:如何正确求助?哪些是违规求助? 4867040
关于积分的说明 15108233
捐赠科研通 4823308
什么是DOI,文献DOI怎么找? 2582201
邀请新用户注册赠送积分活动 1536254
关于科研通互助平台的介绍 1494653