Deep Learning k‐Space‐to‐Image Reconstruction Facilitates High Spatial Resolution and Scan Time Reduction in Diffusion‐Weighted Imaging Breast MRI

磁共振弥散成像 图像质量 有效扩散系数 核医学 医学 标准差 置信区间 数学 邦费罗尼校正 人工智能 图像分辨率 磁共振成像 算法 计算机科学 统计 放射科 图像(数学)
作者
Stephanie Sauer,Sara Aniki Christner,Anna‐Maria Lois,Piotr Woźnicki,Carolin Curtaz,Andreas Steven Kunz,Elisabeth Weiland,Thomas Benkert,Thorsten Alexander Bley,Bettina Baeßler,Jan‐Peter Grunz
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (3): 1190-1200 被引量:5
标识
DOI:10.1002/jmri.29139
摘要

Background For time‐consuming diffusion‐weighted imaging (DWI) of the breast, deep learning‐based imaging acceleration appears particularly promising. Purpose To investigate a combined k‐space‐to‐image reconstruction approach for scan time reduction and improved spatial resolution in breast DWI. Study Type Retrospective. Population 133 women (age 49.7 ± 12.1 years) underwent multiparametric breast MRI. Field Strength/Sequence 3.0T/T2 turbo spin echo, T1 3D gradient echo, DWI (800 and 1600 sec/mm 2 ). Assessment DWI data were retrospectively processed using deep learning‐based k‐space‐to‐image reconstruction (DL‐DWI) and an additional super‐resolution algorithm (SRDL‐DWI). In addition to signal‐to‐noise ratio and apparent diffusion coefficient (ADC) comparisons among standard, DL‐ and SRDL‐DWI, a range of quantitative similarity (e.g., structural similarity index [SSIM]) and error metrics (e.g., normalized root mean square error [NRMSE], symmetric mean absolute percent error [SMAPE], log accuracy error [LOGAC]) was calculated to analyze structural variations. Subjective image evaluation was performed independently by three radiologists on a seven‐point rating scale. Statistical Tests Friedman's rank‐based analysis of variance with Bonferroni‐corrected pairwise post‐hoc tests. P < 0.05 was considered significant. Results Both DL‐ and SRDL‐DWI allowed for a 39% reduction in simulated scan time over standard DWI (5 vs. 3 minutes). The highest image quality ratings were assigned to SRDL‐DWI with good interreader agreement (ICC 0.834; 95% confidence interval 0.818–0.848). Irrespective of b ‐value, both standard and DL‐DWI produced superior SNR compared to SRDL‐DWI. ADC values were slightly higher in SRDL‐DWI (+0.5%) and DL‐DWI (+3.4%) than in standard DWI. Structural similarity was excellent between DL‐/SRDL‐DWI and standard DWI for either b value (SSIM ≥ 0.86). Calculation of error metrics (NRMSE ≤ 0.05, SMAPE ≤ 0.02, and LOGAC ≤ 0.04) supported the assumption of low voxel‐wise error. Data Conclusion Deep learning‐based k‐space‐to‐image reconstruction reduces simulated scan time of breast DWI by 39% without influencing structural similarity. Additionally, super‐resolution interpolation allows for substantial improvement of subjective image quality. Evidence Level 4 Technical Efficacy Stage 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zdu发布了新的文献求助10
刚刚
刘大大发布了新的文献求助10
刚刚
科目三应助笑点低千愁采纳,获得10
刚刚
lyn完成签到,获得积分10
1秒前
zdy完成签到,获得积分10
1秒前
越越完成签到,获得积分20
1秒前
1秒前
2秒前
Akim应助尔玉采纳,获得10
2秒前
哈哈哈完成签到,获得积分10
3秒前
bkagyin应助zh采纳,获得10
3秒前
小可发布了新的文献求助10
3秒前
Akim应助追寻荔枝采纳,获得10
4秒前
99999sun发布了新的文献求助10
5秒前
cocolu应助仇悦采纳,获得10
6秒前
啦啦啦发布了新的文献求助10
6秒前
WUHUIWEN完成签到,获得积分10
7秒前
7秒前
化学位移值完成签到 ,获得积分10
8秒前
大模型应助liyang采纳,获得10
8秒前
8秒前
snowskating完成签到,获得积分20
8秒前
junzilan发布了新的文献求助10
9秒前
姜姜发布了新的文献求助10
9秒前
解灵完成签到,获得积分20
9秒前
Aniya_Shine完成签到 ,获得积分10
9秒前
小鱼爱吃肉应助Farrah采纳,获得10
10秒前
CodeCraft应助动听的康乃馨采纳,获得10
10秒前
申申来啦应助fengw420采纳,获得10
10秒前
梵高完成签到,获得积分10
10秒前
欢呼新筠发布了新的文献求助20
11秒前
2531发布了新的文献求助10
11秒前
huiya完成签到,获得积分10
13秒前
仇悦完成签到,获得积分10
13秒前
蔬菜狗狗完成签到,获得积分10
13秒前
14秒前
菠萝吹雪发布了新的文献求助10
14秒前
14秒前
小鱼儿完成签到,获得积分10
14秒前
YUU完成签到,获得积分10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
《Undergraduate Research & the Academic Librarian: Case Studies and Best Practices, Volume 2》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299335
求助须知:如何正确求助?哪些是违规求助? 2934244
关于积分的说明 8468073
捐赠科研通 2607711
什么是DOI,文献DOI怎么找? 1423837
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645397