Gated Multi-modal Fusion with Cross-modal Contrastive Learning for Video Question Answering

计算机科学 相关性(法律) 情态动词 水准点(测量) 相似性(几何) 人工智能 任务(项目管理) 自然语言处理 模式 模态(人机交互) 剪辑 帧(网络) 机器学习 语音识别 情报检索 图像(数学) 电信 管理 大地测量学 社会学 政治学 高分子化学 法学 经济 社会科学 化学 地理
作者
Chenyang Lyu,Wenxi Li,Tianbo Ji,Liting Zhou,Cathal Gurrin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 427-438
标识
DOI:10.1007/978-3-031-44195-0_35
摘要

Video Question Answering (VideoQA) is a challenging task that requires the model to understand the complex nature of video data and the variety of questions that can be asked about them. Existing approaches often suffer from the problem of ambiguous answer candidates with low relevance to the visual and auditory part of the video, which limits the performance of VideoQA systems. In this paper, we introduce a novel approach that leverages multi-modal fusion and cross-modal contrastive learning to utilize multi-modal information and enhance the relevance of answer candidates in VideoQA. First, we introduce a gated multi-modal fusion network that learns to combine different modalities such as visual and speech based on their relevance to the question to enrich the representations of video and improve the accuracy of finding the correct answer. Second, we introduce cross-modal contrastive learning to increase the similarity between positive example pairs (i.e., correct answers and corresponding video clips) while decreasing the similarity between negative example pairs (i.e., incorrect answers and unpaired video clips). Specifically, we use three-way contrastive learning between answer and video frame, answer and audio, answer and cross-modal features. Our proposed approach is evaluated on two benchmark audio-aware VideoQA datasets, including AVQA and Music-AVQA, and compared to several state-of-the-art methods. The results show that our approach significantly improves the performance of VideoQA, achieving new state-of-the-art results on these benchmarks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LewisAcid应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得30
刚刚
Ava应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
乙予安应助科研通管家采纳,获得20
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
lily应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
选波发布了新的文献求助10
2秒前
3秒前
3秒前
Ava应助霸道恒天采纳,获得10
3秒前
科研通AI6应助霸道恒天采纳,获得10
3秒前
传奇3应助霸道恒天采纳,获得10
3秒前
科研通AI6应助霸道恒天采纳,获得10
3秒前
Lucas应助霸道恒天采纳,获得10
3秒前
CipherSage应助霸道恒天采纳,获得10
4秒前
慕青应助霸道恒天采纳,获得10
4秒前
赘婿应助霸道恒天采纳,获得10
4秒前
英姑应助霸道恒天采纳,获得10
4秒前
延胡索发布了新的文献求助10
4秒前
4秒前
kckckckckc完成签到 ,获得积分10
5秒前
Owen应助忧郁寻冬采纳,获得10
6秒前
热心玉兰发布了新的文献求助10
7秒前
割牙龈肉发布了新的文献求助10
8秒前
李李李发布了新的文献求助10
9秒前
浮游应助anwen采纳,获得10
10秒前
斯文败类应助壮壮采纳,获得10
10秒前
Rain应助Wang采纳,获得10
12秒前
13秒前
脑洞疼应助开放青旋采纳,获得30
13秒前
Lucas应助长情胡萝卜采纳,获得30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336