亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Gated Multi-modal Fusion with Cross-modal Contrastive Learning for Video Question Answering

计算机科学 相关性(法律) 情态动词 水准点(测量) 相似性(几何) 人工智能 任务(项目管理) 自然语言处理 模式 模态(人机交互) 剪辑 帧(网络) 机器学习 语音识别 情报检索 图像(数学) 电信 管理 大地测量学 社会学 政治学 高分子化学 法学 经济 社会科学 化学 地理
作者
Chenyang Lyu,Wenxi Li,Tianbo Ji,Liting Zhou,Cathal Gurrin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 427-438
标识
DOI:10.1007/978-3-031-44195-0_35
摘要

Video Question Answering (VideoQA) is a challenging task that requires the model to understand the complex nature of video data and the variety of questions that can be asked about them. Existing approaches often suffer from the problem of ambiguous answer candidates with low relevance to the visual and auditory part of the video, which limits the performance of VideoQA systems. In this paper, we introduce a novel approach that leverages multi-modal fusion and cross-modal contrastive learning to utilize multi-modal information and enhance the relevance of answer candidates in VideoQA. First, we introduce a gated multi-modal fusion network that learns to combine different modalities such as visual and speech based on their relevance to the question to enrich the representations of video and improve the accuracy of finding the correct answer. Second, we introduce cross-modal contrastive learning to increase the similarity between positive example pairs (i.e., correct answers and corresponding video clips) while decreasing the similarity between negative example pairs (i.e., incorrect answers and unpaired video clips). Specifically, we use three-way contrastive learning between answer and video frame, answer and audio, answer and cross-modal features. Our proposed approach is evaluated on two benchmark audio-aware VideoQA datasets, including AVQA and Music-AVQA, and compared to several state-of-the-art methods. The results show that our approach significantly improves the performance of VideoQA, achieving new state-of-the-art results on these benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
科研通AI6应助霸气小懒虫采纳,获得30
5秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI2S应助七月采纳,获得10
13秒前
kky完成签到 ,获得积分10
17秒前
奈思完成签到 ,获得积分10
18秒前
19秒前
33秒前
49秒前
在水一方应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Jasper应助CC采纳,获得10
2分钟前
Zhaoyli发布了新的文献求助10
2分钟前
2分钟前
萝卜猪完成签到,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
会会完成签到 ,获得积分20
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
yys10l完成签到,获得积分10
4分钟前
yys完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
QCB完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413316
求助须知:如何正确求助?哪些是违规求助? 4530416
关于积分的说明 14122927
捐赠科研通 4445494
什么是DOI,文献DOI怎么找? 2439208
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408756