Gated Multi-modal Fusion with Cross-modal Contrastive Learning for Video Question Answering

计算机科学 相关性(法律) 情态动词 水准点(测量) 相似性(几何) 人工智能 任务(项目管理) 自然语言处理 模式 模态(人机交互) 剪辑 帧(网络) 机器学习 语音识别 情报检索 图像(数学) 电信 管理 大地测量学 社会学 政治学 高分子化学 法学 经济 社会科学 化学 地理
作者
Chenyang Lyu,Wenxi Li,Tianbo Ji,Liting Zhou,Cathal Gurrin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 427-438
标识
DOI:10.1007/978-3-031-44195-0_35
摘要

Video Question Answering (VideoQA) is a challenging task that requires the model to understand the complex nature of video data and the variety of questions that can be asked about them. Existing approaches often suffer from the problem of ambiguous answer candidates with low relevance to the visual and auditory part of the video, which limits the performance of VideoQA systems. In this paper, we introduce a novel approach that leverages multi-modal fusion and cross-modal contrastive learning to utilize multi-modal information and enhance the relevance of answer candidates in VideoQA. First, we introduce a gated multi-modal fusion network that learns to combine different modalities such as visual and speech based on their relevance to the question to enrich the representations of video and improve the accuracy of finding the correct answer. Second, we introduce cross-modal contrastive learning to increase the similarity between positive example pairs (i.e., correct answers and corresponding video clips) while decreasing the similarity between negative example pairs (i.e., incorrect answers and unpaired video clips). Specifically, we use three-way contrastive learning between answer and video frame, answer and audio, answer and cross-modal features. Our proposed approach is evaluated on two benchmark audio-aware VideoQA datasets, including AVQA and Music-AVQA, and compared to several state-of-the-art methods. The results show that our approach significantly improves the performance of VideoQA, achieving new state-of-the-art results on these benchmarks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk完成签到 ,获得积分10
刚刚
未碎冰蓝完成签到,获得积分20
1秒前
万能图书馆应助Zhusy采纳,获得30
2秒前
2秒前
lili完成签到,获得积分10
2秒前
鸡鱼蚝发布了新的文献求助10
2秒前
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
tranphucthinh发布了新的文献求助10
7秒前
7秒前
科研通AI6应助鸡鱼蚝采纳,获得10
9秒前
11秒前
赘婿应助One采纳,获得10
11秒前
赘婿应助DamienC采纳,获得10
11秒前
tranphucthinh完成签到,获得积分10
12秒前
treetree的应助YY再摆烂采纳,获得10
13秒前
orixero应助doctorc采纳,获得30
13秒前
杠赛来完成签到,获得积分10
14秒前
无语的大雁完成签到 ,获得积分10
15秒前
17秒前
18秒前
lllate完成签到 ,获得积分10
18秒前
19秒前
20秒前
YY再摆烂完成签到,获得积分10
20秒前
22秒前
林非鹿发布了新的文献求助10
24秒前
24秒前
25秒前
zhukeqinag发布了新的文献求助10
25秒前
欣欣子完成签到 ,获得积分10
26秒前
26秒前
27秒前
28秒前
33发布了新的文献求助10
29秒前
刘钊扬完成签到,获得积分10
30秒前
30秒前
doctorc发布了新的文献求助30
30秒前
leezh发布了新的文献求助10
33秒前
小九九发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565699
求助须知:如何正确求助?哪些是违规求助? 4650686
关于积分的说明 14692512
捐赠科研通 4592693
什么是DOI,文献DOI怎么找? 2519716
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463316